On the number of β-redices in random closed linear λ-terms

43rd Australasian Combinatorics Conference, 16 December 2021
Olivier Bodini (LIPN, Paris 13)
Alexandros Singh (LIPN, Paris 13)
Noam Zeilberger (LIX, Polytechnique)

What is the λ-calculus?

2 A

What is the λ-calculus?

- A universal system of computation

What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

represents an anonymous function

What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

feeding an argument t to a function s

What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

feeding an argument t to a function s
- We're interested in terms up to α-equivalence:

$$
(\lambda x . x x)(\lambda x . x x) \stackrel{\alpha}{=}(\lambda y . y y)(\lambda x . x x) \stackrel{\alpha}{\neq}(\lambda y . y a)(\lambda x . x x)
$$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

- Examples of reductions

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

- Examples of reductions
- $((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

- Examples of reductions
- $((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y$
- $(\lambda x .((\lambda y . x y) u)) \xrightarrow{\beta}(\lambda y \cdot(x y))[y:=u]=(\lambda x \cdot(x u))$

Computing with the λ-calculus

- Substitution rule:

$$
\mathrm{T}_{1}\left[v:=\mathrm{T}_{2}\right]
$$

"replace free occurences of v in T_{1} with T_{2} "
(α-converting T if necessary, to avoid capturing variables of T_{2})

- Examples of substitutions
- $(\lambda x .(x y))[y:=x] \neq(\lambda x .(x x))$
- $(\lambda x .(x y))[y:=x] \stackrel{\alpha}{=}(\lambda z .(z y))[y:=x]=(\lambda z .(z x))$
- Dynamics of the λ-calculus: β-reductions
(λ-terms together with β-reduction are enough to encode any computation!)

$$
\left(\left(\lambda x . t_{1}\right) \mathrm{t}_{2}\right) \xrightarrow{\beta} \mathrm{t}_{1}\left[\mathrm{x}:=\mathrm{t}_{2}\right]
$$

- Examples of reductions
- $((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y$
- $(\lambda x .((\lambda y \cdot x y) u)) \xrightarrow{\beta}(\lambda y \cdot(x y))[y:=u]=(\lambda x .(x u))$
- $(\lambda x \cdot(x x))(\lambda y \cdot(y y)) \xrightarrow{\beta}(\lambda y \cdot(y y))(\lambda y \cdot(y y)) \stackrel{\alpha}{=}(\lambda x \cdot(x x))(\lambda y \cdot(y y))$

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

$$
((\lambda x .((\lambda y \cdot(y x)) x))(a b))
$$

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

$$
((\lambda x \cdot((\lambda y \cdot(y x)) x))(a b))
$$

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

- A term with no beta-redices (redexes?) is called a normal form
$((\lambda x .((\lambda y .(y x)) x))(a b)) \xrightarrow{\beta}(\lambda x .(x x))(a b) \xrightarrow{\beta}(a b)(a b)$
normal form!

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

- A term with no beta-redices (redexes?) is called a normal form
$((\lambda x .((\lambda y .(y x)) x))(a b)) \xrightarrow{\beta}(\lambda x .(x x))(a b) \xrightarrow{\beta}(a b)(a b)$
- β-reduction is quite complicated:

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

- A term with no beta-redices (redexes?) is called a normal form
$((\lambda x .((\lambda y .(y x)) x))(a b)) \xrightarrow{\beta}(\lambda x .(x x))(a b) \xrightarrow{\beta}(a b)(a b)$
- β-reduction is quite complicated:
- Reducing a redex can create new redices!

$$
((\lambda x \cdot(x z))(\lambda y \cdot y)) \xrightarrow{\beta}((\lambda y \cdot y) z)
$$

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

- A term with no beta-redices (redexes?) is called a normal form
$((\lambda x .((\lambda y .(y x)) x))(a b)) \xrightarrow{\beta}(\lambda x .(x x))(a b) \xrightarrow{\beta}(a b)(a b)$
- β-reduction is quite complicated:
- Reducing a redex can create new redices!

$$
((\lambda x .(x z))(\lambda y \cdot y)) \xrightarrow{\beta}((\lambda y . y) z)
$$

- Terms may never reach a normal form, their size might even increase! $((\lambda x .(x x))(\lambda x .(x \times x))) \xrightarrow{\beta}(\lambda x .(x x x))(\lambda x .(x x x))(\lambda x .(x x x))$

More on β-reductions

- An occurence of the $\left(\left(\lambda x . t_{1}\right) t_{2}\right)$ "pattern" is called a β-redex:

- A term with no beta-redices (redexes?) is called a normal form
$((\lambda x .((\lambda y .(y x)) x))(a b)) \xrightarrow{\beta}(\lambda x .(x x))(a b) \xrightarrow{\beta}(a b)(a b)$
- β-reduction is quite complicated:
- Reducing a redex can create new redices!

$$
((\lambda x \cdot(x z))(\lambda y \cdot y)) \xrightarrow{\beta}((\lambda y \cdot y) z)
$$

- Terms may never reach a normal form, their size might even increase! $((\lambda x .(x x))(\lambda x .(x x x))) \xrightarrow{\beta}(\lambda x .(x x x))(\lambda x .(x x x))(\lambda x .(x x x))$
- Order in which redices are reduced matters!

$$
\begin{gathered}
(\lambda x . z)((\lambda x .(x x))(\lambda x .(x x))) \longrightarrow(\lambda x . z)((x x)[x:=(\lambda x .(x x))])=\ldots \\
\longrightarrow z[x:=(\lambda x . x x)(\lambda x . x x)]=z \quad 4 \mathrm{G}
\end{gathered}
$$

Previous work on the reduction of λ-terms

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]
- Asymptotically almost no λ-term is strongly normalizing. [DGKRTZ13,BGLZ16]

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]
- Asymptotically almost no λ-term is strongly normalizing. [DGKRTZ13,BGLZ16]

Previous work on the reduction of λ-terms

- Asymptotically almost all λ-terms are strongly normalizing. [DGKRTZ13]
For terms expressed in the previously-presented syntax and size defined recursively as:

$$
|x|=0,|(a b)|=1+|a|+|b|,|\lambda x . t|=1+|t|
$$

- Asymptotically almost no λ-term is strongly normalizing. [DGKRTZ13,BGLZ16]
For terms expressed using de Bruijn indices or combinators (together with appropriate size functions)

Parameter sensitive to the definition of the syntax and the size of terms!

- Almost every simply-typed λ-term has a long β-reduction sequence [SAKT17]

Subfamilies of λ-terms
General terms: no restrictions on variable use

$$
\lambda x . \lambda y . x\left(\begin{array}{ll}
y & a
\end{array} \quad \lambda x . \lambda y . x \quad(\lambda x . x x)(\lambda y . y y)\right.
$$

Subfamilies of λ-terms
General terms: no restrictions on variable use

Subfamilies of λ-terms

General terms: no restrictions on variable use

$\lambda x . \lambda y . x(y)$	$\lambda x . \lambda y . x$
free variable	

Subfamilies of λ-terms

General terms: no restrictions on variable use

Affine Terms: bound variables occur at most once $(\lambda x . \lambda y . a)(\lambda x . x)$ $\lambda x . \lambda y . y$

Linear Terms: bound variables occur exactly once

$$
\lambda x \cdot \lambda y \cdot(y x) a \quad \lambda x \cdot \lambda y \cdot\left(\begin{array}{ll}
y & a)(b x)
\end{array}\right.
$$

$\lambda x . a(\lambda z \cdot(\lambda y . y(x z)))$
β-reducing closed linear terms

7 A
β-reducing closed linear terms

- Closed linear lambda calculus is strongly normalising!
β-reducing closed linear terms
- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
β-reducing closed linear terms
- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
- No longer Turing-complete, many interesting connections with complexity theory (e.g PTIME-completeness [M04])
β-reducing closed linear terms
- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
- No longer Turing-complete, many interesting connections with complexity theory (e.g PTIME-completeness [M04])
- How many β-reduction steps, on average, does one need to reach a normal form starting from a random λ-term?
β-reducing closed linear terms
- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
- No longer Turing-complete, many interesting connections with complexity theory (e.g PTIME-completeness [M04])
- How many β-reduction steps, on average, does one need to reach a normal form starting from a random λ-term?
β-reducing closed linear terms
- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
- No longer Turing-complete, many interesting connections with complexity theory (e.g PTIME-completeness [M04])
- How many β-reduction steps, on average, does one need to reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!
This motivates the central question of this work:
What is the number of β-redices in a random linear λ-term?
β-reducing closed linear terms

- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
- No longer Turing-complete, many interesting connections with complexity theory (e.g PTIME-completeness [M04])
- How many β-reduction steps, on average, does one need to reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!
This motivates the central question of this work:
What is the number of β-redices in a random linear λ-term?
random variable!
uniform distribution

β-reducing closed linear terms

- Closed linear lambda calculus is strongly normalising!
- Repeated β-reduction is guaranteed to terminate, there exists a unique normal form, and reduction order doesn't matter!
- No longer Turing-complete, many interesting connections with complexity theory (e.g PTIME-completeness [M04])
- How many β-reduction steps, on average, does one need to reach a normal form starting from a random λ-term?

A lower bound is given by the number of β-redices!
This motivates the central question of this work:
 seq. of random variables!
uniform distribution on the set of terms of size n

What are maps?

What are maps?

What are maps?

We're interested in unrestricted genus, restricted vertex degrees

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16]

Why should you, a logician, be interested in maps?

String diagrams! [BGJ13, Z16] ($\lambda \mathrm{y} . \lambda z .(\mathrm{y} \lambda w . w) z))(\lambda u . \lambda v . a \mathrm{u})$

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$

- Free var \leftrightarrow unary vertex

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$
$\bullet=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$
$\bullet=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
$\bullet \#$ subterms $\leftrightarrow \#$ edges

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$
$\bullet=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
- \# subterms $\leftrightarrow \#$ edges

Closed linear terms \leftrightarrow trivalent maps Closed affine terms $\leftrightarrow(2,3)$-valent maps Established in [BGJ13, BGGJ13]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing (closed) rooted trivalent maps [BGJ13]

Why should you, a combinatorialist, be interested in λ-terms? Decomposing (closed) rooted trivalent maps [BGJ13]

Why should you, a combinatorialist, be interested in λ-terms? Decomposing (closed) rooted trivalent maps [BGJ13]

Why should you, a combinatorialist, be interested in λ-terms? Decomposing (closed) rooted trivalent maps [BGJ13]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing (closed) rooted trivalent maps [BGJ13] and closed linear terms!

Some of our previous results: limit distributions

Some of our previous results: limit distributions
$\#$ loops $=\#$ id-subterms

Some of our previous results: limit distributions
$\#$ loops $=\#$ id-subterms

Some of our previous results: limit distributions

$\lambda x . \lambda y .(y \lambda z . \lambda w . z w) x$

Some of our previous results: limit distributions
$\#$ bridges $=\#$ closed subterms

$\lambda x . \lambda y .(y \lambda z . \lambda w . z w) x$

Some of our previous results: limit distributions
\# bridges $=\#$ closed subterms

$\lambda x . \lambda y .(y \lambda z . \lambda w . z w) x \quad X_{n}^{\text {sub }} \xrightarrow{D}$ Poisson(1)

Some of our previous results: limit distributions
\# bridges $=\#$ closed subterms

$\lambda x . \lambda y .(y \lambda z . \lambda w . z w) x \quad X_{n}^{\text {sub }} \xrightarrow{D}$ Poisson(1)
β-reduction as map rewriting

$\lambda x .(\lambda y . y(\lambda z . \lambda w . z w))((\lambda u . u) x)$
β-reduction as map rewriting

$\lambda x \cdot(\lambda y . y(\lambda z . \lambda w . z w))((\lambda u . u) x)$
β-reduction as map rewriting

$\lambda x .(\lambda y . y(\lambda z . \lambda w . z w))((\lambda u . u) x)$
β-reduction as map rewriting

$$
\lambda x \cdot(\lambda y \cdot y(\lambda z \cdot \lambda w \cdot z w))((\lambda u \cdot u) x)
$$

β-reduction as map rewriting

Our workflow:

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc
resulting OGFs are purely formal, which makes them difficult to analyse!

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc
resulting OGFs are purely formal, which makes them difficult to analyse!

2) Find appropriate tools to deal with their analysis.

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc
resulting OGFs are purely formal, which makes them difficult to analyse!

2) Find appropriate tools to deal with their analysis.

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc
resulting OGFs are purely formal, which makes them difficult to analyse!

2) Find appropriate tools to deal with their analysis.

- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc
resulting OGFs are purely formal, which makes them difficult to analyse!

2) Find appropriate tools to deal with their analysis.

- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A \cdot B)=\sum_{k=n_{0}}^{n} a_{k} b_{n-k}
$$

Our workflow:

1) Track evolution of parameter during an appropriately chosen decomposition of closed linear terms/trivalent maps.

There's a lot, based on: differential equations, exponential Hadamard products, etc
resulting OGFs are purely formal, which makes them difficult to analyse!

crucial ingredient: coefficients are growing rapidly

2) Find appropriate tools to deal with their analysis.

- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A \cdot B)=\sum_{k=n_{0}}^{n} a_{k} b_{n-k}
$$

Mean number of β-redices in closed terms

Mean number of β-redices in closed terms

- Tracking redices during the decomposition

Mean number of β-redices in closed terms

- Tracking redices during the decomposition
no redex
b

Mean number of β-redices in closed terms

- Tracking redices during the decomposition

Mean number of β-redices in closed terms

- Tracking redices during the decomposition Abstractions, subcase 1.1

Mean number of β-redices in closed terms

- Tracking redices during the decomposition Abstractions, subcase 1.2

\#ways to do this

number of abstractions in t

Mean number of β-redices in closed terms

- Tracking redices during the decomposition Abstractions, subcase 1.3

\#ways to do this

number of subterms in $t=$ size of t

Mean number of β-redices in closed terms

- Building the specification of the OGF
- $|t|_{\lambda}=\frac{|t|+1}{3},|t|-|t|_{\lambda}=\frac{2|t|-1}{3}$
- $r \partial_{r} T_{0}=\sum_{t \in T_{0}}|t|_{\beta} z^{|t|} r^{|t|_{\beta}}$
- $\frac{z \partial_{z} \mathrm{~T}_{0}+\mathrm{T}_{0}}{3}=\sum_{\mathrm{t} \in \mathrm{T}_{0}} \frac{|\mathrm{t}|+1}{3} z^{|t|} v^{|t|_{\beta}}$
$\bullet \frac{2 z \partial_{z} \mathrm{~T}_{0}-\mathrm{T}_{0}}{3}=\sum_{t \in \mathrm{~T}_{0}} \frac{2|\mathrm{t}|-1}{3} z^{|t|} v^{|t|_{\beta}}$

Mean number of β-redices in closed terms
-Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T}_{0} & =-z\left(z^{2}(r+1)(1+(r-1) z T)(r-1) \partial_{\mathrm{r}} \mathrm{~T}_{0}\right. \\
& \left.-\frac{(1+z(r-1) \mathrm{T}) z^{3}(r+5) \partial_{z} \mathrm{~T}_{0}}{3}-\frac{z^{3}(r-1)^{2} \mathrm{~T}_{0}^{2}}{3}-\frac{4 z^{2}(r-1) \mathrm{T}_{0}}{3}-z-\mathrm{T}_{0}^{2}\right)
\end{aligned}
$$

Mean number of β-redices in closed terms
-Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T}_{0} & =-z\left(z^{2}(\mathrm{r}+1)(1+(\mathrm{r}-1) z \mathrm{~T})(\mathrm{r}-1) \partial_{\mathrm{r}} \mathrm{~T}_{0}\right. \\
& \left.-\frac{(1+z(\mathrm{r}-1) \mathrm{T}) z^{3}(\mathrm{r}+5) \partial_{z} \mathrm{~T}_{0}}{3}-\frac{z^{3}(\mathrm{r}-1)^{2} \mathrm{~T}_{0}^{2}}{3}-\frac{4 z^{2}(\mathrm{r}-1) \mathrm{T}_{0}}{3}-z-\mathrm{T}_{0}^{2}\right)
\end{aligned}
$$

A plot of the dist. of redices for terms/maps of size $n=119$

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

Whats next?

Whats next?

- Tracking the three patterns whose reduction alters the number of redices (WIP with Bodini, Zeilberger, Wallner, Gittenberger)

$$
\begin{gathered}
(\lambda x \cdot C[(x u)])\left(\lambda y \cdot t_{2}\right) \quad\left(\left(\lambda x . \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \\
(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2}
\end{gathered}
$$

Whats next?

- Tracking the three patterns whose reduction alters the number of redices (WIP with Bodini, Zeilberger, Wallner, Gittenberger)

$$
\begin{gathered}
(\lambda x \cdot C[(x u)])\left(\lambda y \cdot t_{2}\right) \quad\left(\left(\lambda x . \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \\
(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2}
\end{gathered}
$$

- More parameters:

Mean path length

Profile

Whats next?

- Tracking the three patterns whose reduction alters the number of redices (WIP with Bodini, Zeilberger, Wallner, Gittenberger)

$$
\begin{gathered}
(\lambda x \cdot C[(x u)])\left(\lambda y \cdot t_{2}\right) \quad\left(\left(\lambda x . \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \\
(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2}
\end{gathered}
$$

- More parameters:

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[AB00] Arques, D., \& Béraud, J. F. (2000).
Rooted maps on orientable surfaces, Riccati's equation and continued fraction Discrete mathematics, 215(1-3), 1-12.
[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., \& Soria, M. (2001).
Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures \& Algorithms, 19(3-4), 194-246.

Bibliography

[BR86] Bender, E. A., \& Richmond, L. B. (1986).
A survey of the asymptotic behaviour of maps.
Journal of Combinatorial Theory, Series B, 40(3), 297-329.
[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., \& Zaionc, M. (2016).
A natural counting of lambda terms.
In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
[BBD19] Bendkowski, M., Bodini, O., \& Dovgal, S. (2019).
Statistical Properties of Lambda Terms.
The Electronic Journal of Combinatorics, P4-1.
[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., \& Hwang, H. K. (2018, June).
Asymptotic distribution of parameters in random maps.
In 29th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[FS93] Flajolet, P., \& Soria, M. (1993).
General combinatorial schemas: Gaussian limit distributions and exponential tails.
Discrete Mathematics, 114(1-3), 159-180.
[B18] Borinsky, M. (2018).
Generating Asymptotics for Factorially Divergent Sequences.
The Electronic Journal of Combinatorics, P4-1.
[BKW21] Banderier, C., Kuba, M., \& Wallner, M. (2021).
Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.
arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., \& Jacquot, A. (2013).
Asymptotics and random sampling for BCI and BCK lambda terms
Theoretical Computer Science, 502, 227-238.
[M04] Mairson, H. G. (2004).
Linear lambda calculus and PTIME-completeness
Journal of Functional Programming, 14(6), 623-633.
[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., \& David, R. (2013)

Asymptotically almost all λ-terms are strongly normalizing
Logical Methods in Computer Science, 9
[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., \& Tsukada, T. (2017)
Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg.

