A novel interpretation of the planar Goulden-Jackson recurrence using the planar λ-calculus

Alexandros Singh (LIPN, Paris 13)
Thursday, March 16th 2023
Journées ALEA 2023

The plan

- A brief overview of maps and the λ-calculus
- Context and related results
- The planar λ-calculus
- Goulden-Jackson recurrence for planar maps
- Closing remarks

What are maps?

What are maps?

$$
4 С Т \ldots
$$

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

What are maps?

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Cute in the 60 s , as part of his approach to the four colour theorem.

What is the λ-calculus?

$\mathrm{f}, \mathrm{t}:=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}|(\mathrm{f} \mathrm{t})$

What is the λ-calculus?
$\underset{\text { variables }}{\mathrm{f}, \mathrm{t}:=x|\lambda x . \mathrm{t}|(\mathrm{ft}),}$

What is the λ-calculus?

What is the λ-calculus?

What is the λ-calculus?

- Introduced by Church around 1928, developed together with Kleene, Rosser.

What is the λ-calculus?

- Introduced by Church around 1928, developed together with Kleene, Rosser.
-Equivalent to: Herbrand-Gödel recursive functions (Kleene), Turing machines (Turing).

What is the λ-calculus?

- Introduced by Church around 1928, developed together with Kleene, Poser.
-Equivalent to: Herbrand-Gödel recursive functions (Kleene), Turing machines (Turing).
-Church-Turing thesis: "effectively computable" = definable in λ-calculus (or Turing machines, or recursive functions).

What is the λ-calculus?

- Introduced by Church around 1928, developed together with Kleene, Rosser.
-Equivalent to: Herbrand-Gödel recursive functions (Kleene), Turing machines (Turing).
-Church-Turing thesis: "effectively computable" = definable in λ-calculus (or Turing machines, or recursive functions).
- In its typed form: functional programming, proof theory,...

Examples of λ-terms

($\lambda x .(x y))$
$(\lambda x .(x x))(\lambda z . z)$
(y $(\lambda x . x))$

open term

closed term
open term with closed subterm

Examples of λ-terms

($\lambda x .(x y))$
$(\lambda x .(x x))(\lambda z . z)$
(y ($\lambda x . x))$
(($\lambda x \cdot \lambda y .(y x)) a)$
$\lambda x . \lambda y .(x y(\lambda z . z))$

open term

closed term
open term with closed subterm
linear term (bound vars. used once)
planar term (vars. used in order)

Examples of λ-terms

($\lambda x .(x y))$
$(\lambda x .(x x))(\lambda z . z)$
($y(\lambda x . x))$
(($\lambda x \cdot \lambda y .(y x)) a)$
$\lambda x . \lambda y .(x y(\lambda z . z))$

open term

closed term
open term with closed subterm
linear term (bound vars. used once)
planar term (vars. used in order)

Terms are considered up to careful renaming of variables:

$$
(\lambda x \cdot \lambda y \cdot(x y x)) \stackrel{\alpha}{=}(\lambda z \cdot \lambda y \cdot(z y z)) \stackrel{\alpha}{\neq}(\lambda x \cdot \lambda y \cdot(z y x))
$$

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms
rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$\operatorname{BCI}(p)$ terms (each bound variable appears p times)
general closed λ-terms

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$\operatorname{BCI}(p)$ terms (each bound variable appears p times) general closed λ-terms
- In 2014, Zeilberger and Giorgetti describe a bijection: rooted planar maps \leftrightarrow normal planar lambda terms

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$B C I(p)$ terms (each bound variable appears p times)
general closed λ-terms
- In 2014, Zeilberger and Giorgetti describe a bijection:
rooted planar maps \leftrightarrow normal planar lambda terms
Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:

$$
\text { BCI }(p) \text { terms (each bound variable appears } p \text { times) }
$$

general closed λ-terms

- In 2014, Zeilberger and Giorgetti describe a bijection:
rooted planar maps \leftrightarrow normal planar lambda terms
Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)
- In 2015, Zeilberger advocates for
"linear lambda terms as invariants of rooted trivalent maps"

Some results $\quad \bullet=\mathrm{w}$. Bodini, Zeilberger

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Some results $\quad \bullet=\mathrm{w}$. Bodini, Zeilberger

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

- Bridges in trivalent maps and closed subterms in closed linear terms

Limit law: Poisson(1)

Some results
 $\bullet=\mathrm{w}$. Bodini, Zeilberger

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms
Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms
Limit law: Poisson(1)
- Vertices of degree 1 in $(1,3)$-valent maps and free variables in open linear terms

$$
\text { Limit law: } \mathcal{N}\left((2 n)^{1 / 3},(2 n)^{1 / 3}\right)
$$

Some results
$\bullet=\mathrm{w}$. Bodini, Zeilberger $\bullet=\bullet$ Gittenberger, Wallner Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms
Limit law: Poisson(1)
- Vertices of degree 1 in $(1,3)$-valent maps and free variables in open linear terms

$$
\text { Limit law: } \mathcal{N}\left((2 n)^{1 / 3},(2 n)^{1 / 3}\right)
$$

- Patterns in trivalent maps and redices in closed linear terms Asymptotic mean and variance: $\frac{n}{24}$

Some results
$\bullet=\mathrm{w}$. Bodini, Zeilberger $\bullet=\bullet+$ Gittenberger, Wallner Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms
Limit law: Poisson(1)
- Vertices of degree 1 in $(1,3)$-valent maps and free variables in open linear terms

$$
\text { Limit law: } \mathcal{N}\left((2 n)^{1 / 3},(2 n)^{1 / 3}\right)
$$

- Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: $\frac{n}{24}$

- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11 n}{240}$

Some results
$\bullet=\mathrm{w}$. Bodini, Zeilberger $\bullet=\bullet+$ Gittenberger, Wallner Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms Limit law: Poisson(1)
- Vertices of degree 1 in (1,3)-valent maps and free variables in open linear terms

$$
\text { Limit law: } \mathcal{N}\left((2 n)^{1 / 3},(2 n)^{1 / 3}\right)
$$

- Patterns in trivalent maps and redices in closed linear terms Asymptotic mean and variance: $\frac{n}{24}$
- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11 n}{240}$
Similar results for planar maps/terms, plus: a new interpretation of a recurrence of Goulden and Jackson.

This talk!

The planar λ-calculus - formally
Inductive definition (keeping track of free variables):

The planar λ-calculus - formally
Inductive definition (keeping track of free variables):

The planar λ-calculus - formally
Inductive definition (keeping track of free variables):

From open planar terms to maps

- using variables in order \leftrightarrow planarity of diagrams

Q: What if we erase the labels? Can we recover them?
A: Yes, via an exploration process! [BGJ13, ZG14]

Decomposing planar trivalent maps

(with a boundary)

Decomposing planar trivalent maps

(with a boundary)

Decomposing planar trivalent maps

(with a boundary)

$\int_{\mathrm{P}(z, u)}^{\text {edges }} \underset{\sim}{\text { non-root unary vertices }}=\mathbf{u z}+z \mathrm{P}(z, u)^{2}$

Decomposing planar trivalent maps

$$
\int_{\mathrm{P}(\mathrm{z}, \mathrm{u})}^{\text {edges }}=\mathrm{uz}+\mathrm{zP}(z, \mathfrak{u})^{2}+\mathrm{z} \frac{\mathrm{P}(z, \mathfrak{u})-\mathrm{P}(z, 0)}{\mathrm{u}}
$$

Decomposing planar trivalent maps

$$
\frac{}{x \vdash x} \operatorname{var}\left|\frac{\Gamma \vdash \mathrm{f} \Delta \vdash \mathrm{t}}{\Gamma, \Delta \vdash(\mathrm{ft})} \mathrm{app}\right| \frac{\Gamma, x \vdash \mathrm{t}}{\Gamma \vdash \lambda x . \mathrm{t}} \text { abs }
$$

Context of at least 1 var
Consume rightmost one

Decomposing planar trivalent maps and open planar terms!

$$
\frac{}{\chi \vdash x} \operatorname{var} \left\lvert\, \frac{\Gamma \vdash f \Delta \vdash t}{\Gamma, \Delta \vdash(f t)}\right. \text { app } \left\lvert\, \frac{\Gamma, \chi \vdash t}{\Gamma \vdash \lambda \chi . t}\right. \text { abs }
$$

Decomposing planar trivalent maps and open planar terms!

$$
\frac{\Gamma \vdash x}{\chi \vdash \operatorname{var}} \left\lvert\, \frac{\Gamma \vdash \mathrm{f} \Delta \vdash \mathrm{t}}{\Gamma, \Delta \vdash(\mathrm{ft})}\right. \text { app } \left\lvert\, \frac{\Gamma, \chi \vdash \mathrm{t}}{\Gamma \vdash \lambda \chi . \mathrm{t}}\right. \text { abs }
$$

For arbitrary genus replace $z \frac{F(z, u)-F(z, 0)}{u}$ by $z \partial_{u} F(z, u)$!

$$
\begin{aligned}
& \uparrow_{\text {free vars. }} \\
& \text { subterms }
\end{aligned}
$$

Closed planar terms and contexts

- Restricting the previous bijection we have: closed planar terms \Leftrightarrow rooted trivalent planar maps

$$
\lambda x . \lambda y .((x y)(\lambda z . z)) \leftrightarrow
$$

Closed planar terms and contexts

- Restricting the previous bijection we have: closed planar terms \Leftrightarrow rooted trivalent planar maps

$$
\lambda x . \lambda y \cdot((x y)(\lambda z . z))
$$

-We can also consider contexts:
$\lambda x . \lambda y .((x y) \square)$
\leftrightarrow

Closed planar terms and contexts
Lemma
A closed planar term with $n=3 k+2, k \in \mathbb{N}$, subterms has:

Closed planar terms and contexts
Lemma
A closed planar term with $n=3 k+2, k \in \mathbb{N}$, subterms has:

- K applications

Closed planar terms and contexts
Lemma
A closed planar term with $n=3 k+2, k \in \mathbb{N}$, subterms has:

- k applications
- $k+1$ abstractions

Closed planar terms and contexts

Lemma

A closed planar term with $n=3 k+2, k \in \mathbb{N}$, subterms has:

- k applications
- $k+1$ abstractions
- $k+1$ variables

The planar Goulden-Jackson recurrence
In [GJ08], Goulden and Jackson give the following recurrence for $\mathrm{F}(\mathrm{k}, \mathrm{g})=\#$ of rooted triangulations of k faces and genus g :

$$
F(k, g)=\frac{f(k, g)}{3 k+2}, \text { for }(k, g) \in S \backslash\{(-1,0),(0,0)\} \text {, }
$$

where $S=\left\{(k, g) \in \mathbb{Z}^{2} \mid k \geqslant-1,0 \leqslant g \leqslant \frac{k+1}{2}\right\}$ and $f(k, g)$ is
$f(-1,0)=\frac{1}{2}$
$f(k, g)=0$, for $(k, g) \notin S$.
$f(k, g)=\frac{4(3 k+2)}{k+1}\left(k(3 k-2) f(k-2, g-1)+\sum f(i, h) f(j, \ell)\right)$,
with the sum being taken over all pairs $(i, h) \in S,(j, \ell) \in S$ such that $i+j=k-2$ and $h+\ell=g$.

The planar Goulden-Jackson recurrence
using the KP hierarchy!
In [GJ08], Goulden and Jackson give the following recurrence for $F(k, g)=\#$ of rooted triangulations of k faces and genus g :

$$
F(k, g)=\frac{f(k, g)}{3 k+2}, \text { for }(k, g) \in S \backslash\{(-1,0),(0,0)\} \text {, }
$$

where $S=\left\{(k, g) \in \mathbb{Z}^{2} \mid k \geqslant-1,0 \leqslant g \leqslant \frac{k+1}{2}\right\}$ and $f(k, g)$ is
$f(-1,0)=\frac{1}{2}$
$f(k, g)=0$, for $(k, g) \notin S$.
$f(k, g)=\frac{4(3 k+2)}{k+1}\left(k(3 k-2) f(k-2, g-1)+\sum f(i, h) f(j, \ell)\right)$,
with the sum being taken over all pairs $(i, h) \in S,(j, \ell) \in S$ such that $i+j=k-2$ and $h+\ell=g$.

Open problem: give a combinatorial interpretation of the above. Planar case resolved by Baptiste Louf [B19].

The planar Goulden-Jackson recurrence
Reparameterising and setting $g=0$, we have:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k) \\
& (k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
\end{aligned}
$$

where $p(k)$ counts

The planar Goulden-Jackson recurrence
Reparameterising and setting $g=0$, we have:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k) \\
& (k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
\end{aligned}
$$

where $p(k)$ counts

- rooted planar triangulations with $2 k$ faces

The planar Goulden-Jackson recurrence
Reparameterising and setting $g=0$, we have:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k) \\
& (k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
\end{aligned}
$$

where $p(k)$ counts

- rooted planar triangulations with $2 k$ faces
- rooted planar trivalent maps with 2 k vertices

Notice the apparent shift in size notion!
$3 \mathrm{k}+2$ edges $\leftrightarrow 2 \mathrm{k}$ vertices

The planar Goulden-Jackson recurrence
Reparameterising and setting $g=0$, we have:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k) \\
& (k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
\end{aligned}
$$

where $p(k)$ counts

- rooted planar triangulations with $2 k$ faces
- rooted planar trivalent maps with 2 k vertices
- closed planar terms with k applications

Notice the apparent shift in size notion!
$3 \mathrm{k}+2$ edges $\leftrightarrow 2 \mathrm{k}$ vertices $3 \mathrm{k}+2$ subterms $\leftrightarrow \mathrm{k}$ applications

How to (re)prove the Planar G\&J Recurrence

- Step 1:

How to (re)prove the Planar G\&J Recurrence

- Step 1:

$$
\begin{aligned}
& u(0)=1 \\
& \mathfrak{u}(k+1)=2(3 k+2) p(k)
\end{aligned}
$$

How to (re)prove the Planar G\&J Recurrence

- Step 1:

$$
\begin{aligned}
& u(0)=1 \\
& \mathfrak{u}(k+1)=2(3 k+2) p(k)
\end{aligned}
$$

How to (re)prove the Planar G\&J Recurrence

- Step 1:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k)
\end{aligned}
$$

$\lambda x . \lambda y .(x y)$

How to (re)prove the Planar G\&J Recurrence

- Step 1:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k)
\end{aligned}
$$

$\lambda x . \lambda y .(x y)$

How to (re)prove the Planar G\&J Recurrence

- Step 1:

$$
\begin{aligned}
& u(0)=1 \quad-k \text { applications } \Rightarrow 3 k+2 \text { subterms } \\
& u(k+1)=2(3 k+2) p(k) \quad 2 \text { ways to introduce a new application } \\
& \lambda x . \lambda y .(\square(x y)) \\
& \lambda x . \lambda y .(x y) \Leftrightarrow \quad \text { or } \\
& \lambda x . \lambda y .((x y) \square)
\end{aligned}
$$

So, $u(k)$ counts contexts with k apps!

How to (re)prove the Planar G\&J Recurrence

- Step 1:

$$
\begin{aligned}
& u(0)=1 \\
& u(k+1)=2(3 k+2) p(k)
\end{aligned}
$$

How to (re)prove the Planar G\&J Recurrence

- Step 1:

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} \mathfrak{u}(\mathfrak{i}) \mathfrak{u}(n-\mathfrak{i})
$$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v \cdot z u v) w)(x y)$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) \mathfrak{p}(k)=\sum_{i=0}^{n} \mathfrak{u}(\mathfrak{i}) \mathfrak{u}(n-i)
$$

$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v \cdot z u v) w)(x y)$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) \mathfrak{p}(k)=\sum_{i=0}^{n} \mathfrak{u}(i) \mathfrak{u}(n-i)
$$

split var-pointed term into two contexts
\longrightarrow minimal closed subterm that contains v
$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w)(x y)$
$\lambda x . \lambda y . \square(x y)$
$\lambda z \cdot \lambda w \cdot(\lambda u . \lambda v \cdot z u v) w$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

split var-pointed term into two contexts
\longrightarrow minimal closed subterm that contains v
$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w)(x y)$
$\lambda x . \lambda y . \square(x y)$
$\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) \mathfrak{p}(k)=\sum_{i=0}^{n} \mathfrak{u}(i) \mathfrak{u}(n-i)
$$

split var-pointed term into two contexts
\longrightarrow minimal closed subterm that contains v
$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w)(x y)$
$\lambda x . \lambda y . \square(x y)$
$\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v \cdot z u v) w$ not a context!

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) \mathfrak{p}(k)=\sum_{i=0}^{n} \mathfrak{u}(\mathfrak{i}) \mathfrak{u}(n-i)
$$

Lemma:

$\lambda_{\lrcorner \cdot}\left(\lambda_{\lrcorner \cdot}\left(\left(\lambda_{\lrcorner \cdot\lrcorner\lrcorner)} \square\right)\right)_{\lrcorner}\right.$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
\rightarrow k \text { applications } \Rightarrow(k+1) \text { variables }
$$

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

split var-pointed term into two contexts

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

split var-pointed term into two contexts
\longrightarrow minimal closed subterm that contains v
$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w)(x y)$
$\lambda x . \lambda y . \square(x y)$
 not a context!

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

split var-pointed term into two contexts
\longrightarrow minimal closed subterm that contains v
$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w)(x y)$
$\lambda x . \lambda y . \square(x y)$
$\begin{array}{cl}\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v \cdot z u v) w & \rightarrow \lambda_{\lrcorner \cdot} \lambda_{\lrcorner \cdot}\left(\lambda_{\lrcorner \cdot} \lambda_{\lrcorner \cdot \sqcup \sqcup}\right) \\ \text { not a context! } & \rightarrow \lambda_{\lrcorner \cdot}\left(\lambda_{\lrcorner \cdot} \cdot \lambda_{\lrcorner \cdot \sqcup \sqcup \square)}\right)\end{array}$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

split var-pointed term into two contexts
\longrightarrow minimal closed subterm that contains v
$\lambda x \cdot \lambda y \cdot(\lambda z \cdot \lambda w \cdot(\lambda u \cdot \lambda v . z u v) w)(x y)$
$\lambda x . \lambda y . \square(x y)$

$$
\begin{aligned}
& \lambda z . \lambda w .\left(\lambda_{u} . \lambda \nu . z u v\right) w \rightarrow \lambda_{\lrcorner .} \lambda_{\lrcorner} .\left(\lambda_{\lrcorner} . \lambda_{\lrcorner \cdot \sqcup \sqcup \sqcup)}\right. \text { ц }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \lambda w \cdot(\lambda u \cdot \lambda v \cdot u v \square) w
\end{aligned}
$$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

Step 2. \quad applications $\Rightarrow(k+1)$ variables
$(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

How to (re)prove the Planar G\&J Recurrence

- Step 2:

$$
(k+1) p(k)=\sum_{i=0}^{n} u(i) u(n-i)
$$

Some open problems

- Bijective interpretation of G\&J rec. for general genus

$$
\begin{aligned}
& o(0, g)=1 \\
& o(k+1, g)=2(3 k+2) t(k, g)
\end{aligned}
$$

$$
(k+1) t(k, g)=\frac{2 k(3 k-2) o(k-1, g-1)}{+}
$$

Some open problems

- Bijective interpretation of G\&J rec. for general genus

$$
\begin{aligned}
& o(0, g)=1 \\
& o(k+1, g)=2(3 k+2) t(k, g)
\end{aligned}
$$

$$
(k+1) t(k, g)=\frac{2 k(3 k-2) o(k-1, g-1)}{+}
$$

- Genus for λ-terms?

Some open problems

- Bijective interpretation of G\&J rec. for general genus

$$
\begin{aligned}
& o(0, g)=1 \\
& o(k+1, g)=2(3 k+2) t(k, g)
\end{aligned}
$$

$$
(k+1) t(k, g)=\frac{2 k(3 k-2) o(k-1, g-1)}{+}
$$

- Genus for λ-terms?

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[AB00] Arques, D., \& Béraud, J. F. (2000).
Rooted maps on orientable surfaces, Riccati's equation and continued fraction Discrete mathematics, 215(1-3), 1-12.
[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., \& Soria, M. (2001).
Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures \& Algorithms, 19(3-4), 194-246.

Bibliography

[BR86] Bender, E. A., \& Richmond, L. B. (1986).
A survey of the asymptotic behaviour of maps.
Journal of Combinatorial Theory, Series B, 40(3), 297-329.
[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., \& Zaionc, M. (2016).
A natural counting of lambda terms.
In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
[BBD19] Bendkowski, M., Bodini, O., \& Dovgal, S. (2019).
Statistical Properties of Lambda Terms.
The Electronic Journal of Combinatorics, P4-1.
[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., \& Hwang, H. K. (2018, June).
Asymptotic distribution of parameters in random maps.
In 29th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[FS93] Flajolet, P., \& Soria, M. (1993).
General combinatorial schemas: Gaussian limit distributions and exponential tails.
Discrete Mathematics, 114(1-3), 159-180.
[B18] Borinsky, M. (2018).
Generating Asymptotics for Factorially Divergent Sequences.
The Electronic Journal of Combinatorics, P4-1.
[BKW21] Banderier, C., Kuba, M., \& Wallner, M. (2021).
Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.
arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., \& Jacquot, A. (2013).
Asymptotics and random sampling for BCl and BCK lambda terms
Theoretical Computer Science, 502, 227-238.
[M04] Mairson, H. G. (2004).
Linear lambda calculus and PTIME-completeness Journal of Functional Programming, 14(6), 623-633.
[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., \& David, R. (2013)

Asymptotically almost all λ-terms are strongly normalizing
Logical Methods in Computer Science, 9
[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., \& Tsukada, T. (2017)
Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg.

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

Bibliography

[B19] Baptiste L. (2019).
A new family of bijections for planar maps Journal of Combinatorial Theory, Series A.

