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The plan

A brief overview of maps and the λ-calculus

Context and related results

The planar λ-calculus

Goulden-Jackson recurrence for planar maps

Closing remarks
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What are maps?
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What are maps?

A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

4CT...

scaling limits... matrix integrals, Witten’s conjecture, . . .
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What are maps?

A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

Their enumeration was pioneered by Tutte in the 60s, as
part of his approach to the four colour theorem.
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What is the λ-calculus?

f, t := x | λx.t |(f t)

variables

abstractions
represent functions “x 7→ t”

applications
represent “f(t)”

Introduced by Church around 1928, developed together with
Kleene, Rosser.

Equivalent to: Herbrand-Gödel recursive functions (Kleene),
Turing machines (Turing).

Church-Turing thesis: “effectively computable” = definable
in λ-calculus (or Turing machines, or recursive functions).

In its typed form: functional programming, proof theory,...
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Examples of λ-terms

(λx.(x x))(λz.z)

(λx.(x y)) open term

closed term

(y (λx.x)) open term with closed subterm
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Examples of λ-terms

(λx.(x x))(λz.z)

(λx.(x y)) open term

closed term

(y (λx.x)) open term with closed subterm

λx.λy.(x y (λz.z)) planar term (vars. used in order)

((λx.λy.(y x)) a) linear term (bound vars. used once)
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Examples of λ-terms

(λx.(x x))(λz.z)

(λx.(x y)) open term

closed term

(y (λx.x)) open term with closed subterm

λx.λy.(x y (λz.z)) planar term (vars. used in order)

((λx.λy.(y x)) a) linear term (bound vars. used once)

Terms are considered up to careful renaming of variables:

(λx.λy.(x y x))
α
= (λz.λy.(z y z))

α

̸= (λx.λy.(z y x))



6 A

Linking terms and maps

In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps ↔ closed linear terms

rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ-terms
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Linking terms and maps

In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps ↔ closed linear terms

In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps ↔ normal planar lambda terms

In 2015, Zeilberger advocates for

“linear lambda terms as invariants of rooted trivalent maps”

rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ-terms

Both make use of decompositions in the style of Tutte!
(cf. the approach of Arquès-Béraud in 2000)
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Some results

Parameters on maps and terms of arbitrary genus (number of):
Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

=w. Bodini, Zeilberger
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Some results

Parameters on maps and terms of arbitrary genus (number of):
Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Bridges in trivalent maps and closed subterms in closed linear terms

Limit law: Poisson(1)

Vertices of degree 1 in (1,3)-valent maps and free variables in open
linear terms

Limit law: N((2n)1/3, (2n)1/3)

Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: n
24

Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: 11n
240

Similar results for planar maps/terms, plus: a new interpretation of
a recurrence of Goulden and Jackson.

=w. Bodini, Zeilberger = + Gittenberger, Wallner

This talk!
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The planar λ-calculus - formally

Inductive definition (keeping track of free variables):

x ⊢ x
var

free
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The planar λ-calculus - formally

Inductive definition (keeping track of free variables):

x ⊢ x
var

free

abstractions
represent functions “x 7→ t”

Γ , x ⊢ t

Γ ⊢ λx.t
abs

bound

applications
represent “f(t)”

Γ ⊢ f ∆ ⊢ t

Γ ,∆ ⊢ (f t)
app

disjoint
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From open planar terms to maps

λx.t →
λ

x

t

(s t) →
t s

α

x → boundary
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From open planar terms to maps

λx.t →
λ

x

t

(s t) →
t s

α

order matters!

λ

λ

λ

λ

(λx.x) (λy.(a y) (λw.λu.w u))

α

α

α

α
x → boundary
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From open planar terms to maps
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(s t) →
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order matters!
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λ
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α
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From open planar terms to maps
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t

(s t) →
t s

α

order matters!

λ

λ
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λ
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From open planar terms to maps

# subterms ↔ # edges

Dictionary

λx.t →
λ

x

t

(s t) →
t s

α

order matters!

λ

λ

λ

λ

(λx.x) (λy.(a y) (λw.λu.w u))

closed subterms ↔ bridges

using variables in order ↔ planarity of diagrams

α

α

α

α
x → boundary
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From open planar terms to maps

# subterms ↔ # edges

Dictionary

λx.t →
λ

x

t

(s t) →
t s

α

order matters!

(λx.x) (λy.(a y) (λw.λu.w u))

closed subterms ↔ bridges

using variables in order ↔ planarity of diagrams

A: Yes, via an exploration process! [BGJ13, ZG14]

Q: What if we erase the labels? Can we recover them?

x → boundary



10 A

Decomposing planar trivalent maps
(with a boundary)
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P(z,u) = uz

edges

Decomposing planar trivalent maps

non-root unary vertices

(with a boundary)
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P(z,u) = uz zP(z,u)2+

edges

Decomposing planar trivalent maps

non-root unary vertices

(with a boundary)
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P(z,u) = uz zP(z,u)2+ + z
P(z,u)−P(z,0)

u

edges

Decomposing planar trivalent maps

non-root unary vertices

Boundary contains at least one unary vertex

Consume first according to contour
&

(with a boundary)
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P(z,u) = uz zP(z,u)2+ + z
P(z,u)−P(z,0)

u

edges

Decomposing planar trivalent maps

non-root unary vertices

Γ , x ⊢ t

Γ ⊢ λx.t
abs

Γ ⊢ f ∆ ⊢ t

Γ ,∆ ⊢ (f t)
app

Context of at least 1 var

Consume rightmost one
&

x ⊢ x
var

(with a boundary)
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P(z,u) = uz zP(z,u)2+ + z
P(z,u)−P(z,0)

u

edges

subterms

Decomposing planar trivalent maps and open planar terms!

non-root unary vertices

Γ , x ⊢ t

Γ ⊢ λx.t
abs

free vars.

Γ ⊢ f ∆ ⊢ t

Γ ,∆ ⊢ (f t)
app

x ⊢ x
var

(with a boundary)
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P(z,u) = uz zP(z,u)2+ + z
P(z,u)−P(z,0)

u

edges

subterms

Decomposing planar trivalent maps and open planar terms!

non-root unary vertices

Γ , x ⊢ t

Γ ⊢ λx.t
abs

free vars.

Γ ⊢ f ∆ ⊢ t

Γ ,∆ ⊢ (f t)
app

x ⊢ x
var

(with a boundary)

For arbitrary genus replace z
F(z,u)−F(z,0)

u
by z∂uF(z,u)!
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Closed planar terms and contexts

Restricting the previous bijection we have:

closed planar terms ⇔ rooted trivalent planar maps

λx.λy.((x y) (λz.z)) ↔
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Closed planar terms and contexts

Restricting the previous bijection we have:

closed planar terms ⇔ rooted trivalent planar maps

λx.λy.((x y) (λz.z))

We can also consider contexts:

λx.λy.((x y) □) ↔

↔
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Closed planar terms and contexts

Lemma

A closed planar term with n = 3k+ 2,k ∈ N, subterms has:

n = 11
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Closed planar terms and contexts
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n = 11k applications
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Closed planar terms and contexts

Lemma

A closed planar term with n = 3k+ 2,k ∈ N, subterms has:
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k+ 1 abstractions
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Closed planar terms and contexts

Lemma

A closed planar term with n = 3k+ 2,k ∈ N, subterms has:

n = 11k applications

k+ 1 abstractions

k+ 1 variables
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The planar Goulden-Jackson recurrence

In [GJ08], Goulden and Jackson give the following recurrence

F(k,g) = f(k,g)
3k+2 , for (k,g) ∈ S \ {(−1, 0), (0, 0)},

where S = {(k,g) ∈ Z2 | k ⩾ −1, 0 ⩽ g ⩽ k+1
2 } and f(k,g) is

f(k,g) = 4(3k+2)
k+1 (k(3k− 2)f(k− 2,g− 1) +

∑
f(i,h)f(j, ℓ)) ,

f(−1, 0) = 1
2

f(k,g) = 0, for (k,g) ̸∈ S.

with the sum being taken over all pairs (i,h) ∈ S, (j, ℓ) ∈ S
such that i+ j = k− 2 and h+ ℓ = g.

for F(k,g) = # of rooted triangulations of k faces and genus g:
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The planar Goulden-Jackson recurrence

In [GJ08], Goulden and Jackson give the following recurrence

F(k,g) = f(k,g)
3k+2 , for (k,g) ∈ S \ {(−1, 0), (0, 0)},

where S = {(k,g) ∈ Z2 | k ⩾ −1, 0 ⩽ g ⩽ k+1
2 } and f(k,g) is

f(k,g) = 4(3k+2)
k+1 (k(3k− 2)f(k− 2,g− 1) +

∑
f(i,h)f(j, ℓ)) ,

f(−1, 0) = 1
2

f(k,g) = 0, for (k,g) ̸∈ S.

with the sum being taken over all pairs (i,h) ∈ S, (j, ℓ) ∈ S
such that i+ j = k− 2 and h+ ℓ = g.

for F(k,g) = # of rooted triangulations of k faces and genus g:

Open problem: give a combinatorial interpretation of the above.
Planar case resolved by Baptiste Louf [B19].

using the KP hierarchy!
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The planar Goulden-Jackson recurrence

Reparameterising and setting g = 0, we have:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

where p(k) counts
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The planar Goulden-Jackson recurrence

Reparameterising and setting g = 0, we have:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

where p(k) counts

rooted planar triangulations with 2k faces
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The planar Goulden-Jackson recurrence

Reparameterising and setting g = 0, we have:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

where p(k) counts

rooted planar trivalent maps with 2k vertices

rooted planar triangulations with 2k faces
duality

Notice the apparent shift in size notion!
3k+ 2 edges ↔ 2k vertices
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The planar Goulden-Jackson recurrence

Reparameterising and setting g = 0, we have:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

where p(k) counts

rooted planar trivalent maps with 2k vertices

rooted planar triangulations with 2k faces

closed planar terms with k applications

duality

bijection

Notice the apparent shift in size notion!

3k+ 2 subterms ↔ k applications
3k+ 2 edges ↔ 2k vertices
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How to (re)prove the Planar G&J Recurrence

Step 1:
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How to (re)prove the Planar G&J Recurrence

Step 1:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

k applications ⇒ 3k+ 2 subterms

2 ways to introduce a new application

λx.λy.(x y) ⇔
λx.λy.(□ (x y))

λx.λy.((x y) □)

or

So, u(k) counts contexts with k apps!
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How to (re)prove the Planar G&J Recurrence

Step 1:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

k applications ⇒ 3k+ 2 subterms
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How to (re)prove the Planar G&J Recurrence

Step 1:

u(0) = 1

u(k+ 1) = 2(3k+ 2)p(k)

k applications ⇒ 3k+ 2 subterms

2 ways to introduce a new application

⇔ or
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How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)



14 B

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
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u(i)u(n− i)

k applications ⇒ (k+ 1) variables

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)
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How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)
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λz.λw.(λu.λv.z u v) w

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)

λx.λy.□(x y)

minimal closed subterm that contains v
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λz.λw.(λu.λv.z u v) w

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)

λx.λy.□(x y)

minimal closed subterm that contains v

not a context!
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How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts
Lemma:

λ .(λ .((λ . )□))

λ

λ

λ
α

α

α
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How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts
Lemma:

λ .(λ .((λ . )□))

λ

λ

λ
α

α

α

λx.(λy.((λz.yz)□))x

λ

λ

λ
α

α

α

↔
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λz.λw.(λu.λv.z u v) w

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)

λx.λy.□(x y)

minimal closed subterm that contains v

not a context!
λ .λ .(λ .λ . )
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λz.λw.(λu.λv.z u v) w

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)

λx.λy.□(x y)

minimal closed subterm that contains v

not a context!
λ .λ .(λ .λ . )
λ .(λ .λ . □)
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λz.λw.(λu.λv.z u v) w

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts

λx.λy.(λz.λw.(λu.λv.z u v) w)(x y)

λx.λy.□(x y)

minimal closed subterm that contains v

not a context!
λ .λ .(λ .λ . )
λ .(λ .λ . □)

λw.(λu.λv.u v □) w
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How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts



14 M

How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts
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How to (re)prove the Planar G&J Recurrence

Step 2:

(k+ 1)p(k) =
n∑

i=0

u(i)u(n− i)

k applications ⇒ (k+ 1) variables

split var-pointed term into two contexts



14 O
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Some open problems

Bijective interpretation of G&J rec. for general genus

o(0,g) = 1

o(k+ 1,g) = 2(3k+ 2)t(k,g)

n∑
i+j=k

h+ℓ=g

o(i,h)o(j, ℓ)

(k+ 1)t(k,g) =

2k(3k− 2)o(k− 1,g− 1)

+
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Bijective interpretation of G&J rec. for general genus

o(0,g) = 1

o(k+ 1,g) = 2(3k+ 2)t(k,g)

n∑
i+j=k

h+ℓ=g

o(i,h)o(j, ℓ)

(k+ 1)t(k,g) =

2k(3k− 2)o(k− 1,g− 1)

+

Thank you!

Genus for λ-terms?
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