

Combinatorics and Arithmetic for Physics, IHES, 1 December 2021
Olivier Bodini (LIPN, Paris 13)
Alexandros Singh (LIPN, Paris 13)
Noam Zeilberger (LIX, Polytechnique)

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What do the following subjects have in common?

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What do the following subjects have in common?

- The structure of typical terms in fragments of the linear λ-calculus

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What do the following subjects have in common?

- The structure of typical terms in fragments of the linear λ-calculus
- Number of: id-subterms, closed subterms, free vars, unused λs

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What do the following subjects have in common?

- The structure of typical terms in fragments of the linear λ-calculus
- Number of: id-subterms, closed subterms, free vars, unused $\lambda \mathrm{s}$
- The structure of typical trivalent maps and their relaxations
- Number of: loops, bridges, vertices of degree one and two

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What do the following subjects have in common?

- The structure of typical terms in fragments of the linear λ-calculus
- Number of: id-subterms, closed subterms, free vars, unused $\lambda \mathrm{s}$
- The structure of typical trivalent maps and their relaxations
- Number of: loops, bridges, vertices of degree one and two
- The structure of typical Feynman diagrams in 0-dim ϕ^{3} QFT
- Action given by $S(\phi)=-\frac{\phi^{2}}{2}+\frac{g \phi^{3}}{3!}+J \phi$.

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What do the following subjects have in common?

- The structure of typical terms in fragments of the linear λ-calculus
- Number of: id-subterms, closed subterms, free vars, unused $\lambda \mathrm{s}$
- The structure of typical trivalent maps and their relaxations
- Number of: loops, bridges, vertices of degree one and two
- The structure of typical Feynman diagrams in 0-dim ϕ^{3} QFT
- Action given by $S(\phi)=-\frac{\phi^{2}}{2}+\frac{g \phi^{3}}{3!}+J \phi$.

There exists a dictionary relating structural properties of objects in these three families of structures.

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What do the following subjects have in common?

- The structure of typical terms in fragments of the linear λ-calculus
- Number of: id-subterms, closed subterms, free vars, unused $\lambda \mathrm{s}$
- The structure of typical trivalent maps and their relaxations
- Number of: loops, bridges, vertices of degree one and two
- The structure of typical Feynman diagrams in 0-dim ϕ^{3} QFT
- Action given by $S(\phi)=-\frac{\phi^{2}}{2}+\frac{g \phi^{3}}{3!}+J \phi$.

There exists a dictionary relating structural properties of objects in these three families of structures.

Techniques drawn from combinatorics, logic, and (physicsoc: may be used in tandem to study them!

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What is the λ-calculus?

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What is the λ-calculus?

- A universal system of computation

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

$x|\lambda x . t|(s t)$
 variable
 abstraction

represents an anonymous function

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

feeding an argument t to a function s

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
What is the λ-calculus?

- A universal system of computation
- Its terms are formed using the following grammar

feeding an argument t to a function s
- We're interested in terms up to α-equivalence:

$$
(\lambda x . x x)(\lambda x . x x) \stackrel{\alpha}{=}(\lambda y . y y)(\lambda x . x x) \stackrel{\alpha}{\neq}(\lambda y . y a)(\lambda x . x x)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Subfamilies of λ-terms

General terms: no restrictions on variable use
$\lambda x . \lambda y . x$
$\lambda x . \lambda y . x(y a)$
$(\lambda x . x x)(\lambda y . y y)$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Subfamilies of λ-terms

General terms: no restrictions on variable use

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Subfamilies of λ-terms

General terms: no restrictions on variable use

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Subfamilies of λ-terms

General terms: no restrictions on variable use

Affine Terms: bound variables occur at most once

$$
(\lambda x \cdot \lambda y \cdot a)(\lambda x \cdot x)
$$

Linear Terms: bound variables occur exactly once

$$
\begin{gathered}
\lambda x \cdot \lambda y \cdot(y x) a \quad \lambda x \cdot \lambda y \cdot(y a)(b x) \\
\lambda x \cdot a(\lambda z \cdot(\lambda y \cdot y(x z)))
\end{gathered}
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What are maps?

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What are maps?

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

What are maps?

We're interested in unrestricted genus, restricted vertex degrees

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16]
$\bullet=x$

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a \mathfrak{u})$
$\bullet=x$

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$
$\bullet=x$

Dictionary

- Free var \leftrightarrow unary vertex

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$
$\bullet=x$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda \mathrm{y} . \lambda z .(\mathrm{y} \lambda w . w) z))(\lambda u . \lambda v . a u)$
$\bullet=x$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16]
$(\lambda y \cdot \lambda z \cdot(y \lambda w . w) z))(\lambda u \cdot \lambda v . a u)$
$\bullet=x$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16]
$(\lambda y . \lambda z \cdot(y \lambda w . w) z))(\lambda u \cdot \lambda v . a u)$
$\bullet=x$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
- \# subterms $\leftrightarrow \#$ edges

Why should you, a logician, be interested in maps?
String diagrams! [BGJ13, Z16] ($\lambda y . \lambda z .(y \lambda w . w) z))(\lambda u . \lambda v . a u)$

- $=\chi$

Dictionary

- Free var \leftrightarrow unary vertex
- Unused $\lambda \leftrightarrow$ binary vertex
- Identity-subterm \leftrightarrow loop
- Closed subterm \leftrightarrow bridge
- \# subterms $\leftrightarrow \#$ edges

Closed linear terms \leftrightarrow trivalent maps Closed affine terms $\leftrightarrow(2,3)$-valent maps Established in [BGJ13, BGGJ13]

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Why should you, a combinatorialist, be interested in λ-terms?

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Tutte [AB00]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Tutte [ABOO]

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Tutte [ABOO]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Tutte [ABOO]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Tutte [ABOO]

lin.term $=\chi$

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Cute [ABOO]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Tutte [ABOO]

Why should you, a combinatorialist, be interested in λ-terms?
Decomposing open rooted trivalent maps à la Cute [ABOO]

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]
- Other size notions for λ-terms [BGLZ16, BBD18]

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]
- Other size notions for λ-terms [BGLZ16, BBD18]
- Parameters in general maps [BCDH18]

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]
- Other size notions for λ-terms [BGLZ16, BBD18]
- Parameters in general maps [BCDH18]

We focus on the following families:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]
- Other size notions for λ-terms [BGLZ16, BBD18]
- Parameters in general maps [BCDH18]

We focus on the following families:

- Rooted closed trivalent maps \leftrightarrow closed linear terms

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]
- Other size notions for λ-terms [BGLZ16, BBD18]
- Parameters in general maps [BCDH18]

We focus on the following families:

- Rooted closed trivalent maps \leftrightarrow closed linear terms
- Rooted open trivalent maps \leftrightarrow open linear terms

Recap: λ-terms and maps

- Syntactic diagrams of families of λ-terms yield maps
- λ-terms as invariants of maps encoding decomposition data
- Dictionary: properties of terms \leftrightarrow properties of maps

Our plan: use the dictionary to study both!
Previous works focused on:

- Planar, or generally restricted genus, maps [BFSS01, BR86]
- Other size notions for λ-terms [BGLZ16, BBD18]
- Parameters in general maps [BCDH18]

We focus on the following families:

- Rooted closed trivalent maps \leftrightarrow closed linear terms
- Rooted open trivalent maps \leftrightarrow open linear terms
- Rooted (2,3)-maps \leftrightarrow closed affine terms

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms

$\lambda x . \lambda y .(y \lambda w . w) x$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms
\# loops = \# id-subterms

$\lambda x . \lambda y .(y \lambda w . w) x$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms
$\#$ loops $=\#$ id-subterms

$\lambda x . \lambda y .(y \lambda w . w) x$

$$
X_{n}^{i d} \xrightarrow{\text { D }} \text { Poisson }(1)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms

$\lambda x . \lambda y .(y \lambda z \cdot \lambda w . z w) x$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms
\# bridges = \# closed subterms

$\lambda x . \lambda y .(y \lambda z \cdot \lambda w . z w) x$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms
\# bridges $=$ \# closed subterms

$\lambda x . \lambda y .(y \lambda z \cdot \lambda w . z w) x$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Closed trivalent maps \leftrightarrow closed linear terms
\# bridges $=\#$ closed subterms \quad one bridge \leftrightarrow no bridge

$$
X_{n}^{s u b} \xrightarrow{\text { D }} \text { Poisson }(1)
$$

$$
\lambda x . \lambda y \cdot(y \lambda z \cdot \lambda w \cdot z w) x
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Our results: limit distributions
Open trivalent maps \leftrightarrow open linear terms

$$
(a(\lambda x . \lambda y \cdot(y b)(c x)))
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Our results: limit distributions
Open trivalent maps \leftrightarrow open linear terms
\# unary vertices = \# free vars

$$
(a(\lambda x . \lambda y \cdot(y b)(c x)))
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions

Open trivalent maps \leftrightarrow open linear terms
\# unary vertices = \# free vars

$(a(\lambda x \cdot \lambda y \cdot(y b)(c x)))$

$$
\frac{X_{n}^{f r e e}-\mu_{n}}{\sqrt{\sigma_{n}^{2}}} \xrightarrow{\mathrm{D}} \mathcal{N}(0,1)
$$

$$
\text { for } \mu=\sigma^{2}=(2 n)^{1 / 3}
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Our results: limit distributions
(2,3)-valent maps \leftrightarrow closed affine terms

$(\lambda x . \lambda y \cdot(\lambda z \cdot x) y)(\lambda w \cdot \lambda v \cdot \lambda u . u)$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Our results: limit distributions
(2,3)-valent maps \leftrightarrow closed affine terms
\# binary vertices $=\#$ unused λ

$(\lambda x \cdot \lambda y \cdot(\lambda z \cdot x) y)(\lambda w \cdot \lambda v \cdot \lambda u . u)$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Our results: limit distributions
(2,3)-valent maps \leftrightarrow closed affine terms
\# binary vertices $=\#$ unused λ

$$
\mathbb{P}\left[\frac{X_{n}^{\lambda}-\mathbb{E}\left(X_{n}^{\lambda}\right)}{\sqrt{\mathbb{V}\left(X_{n}^{\lambda}\right)}}=k\right]
$$

$(\lambda x \cdot \lambda y \cdot(\lambda z \cdot x) y)(\lambda w \cdot \lambda v \cdot \lambda u \cdot u) \quad$ for $\mu=\sigma^{2}=\frac{2 n^{2}}{2 / 3}$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our workflow:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our workflow:

1) Establish good bijections to obtain specifications for the bivariate OGFs

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our workflow:

1) Establish good bijections to obtain specifications for the bivariate OGFs

OGFs are purely formal, which makes them difficult to analyse!

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our workflow:

1) Establish good bijections to obtain specifications for the bivariate OGFs

OGFs are purely formal, which makes them difficult to analyse!

2) Develop new tools to analyse purely formal generating functions:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our workflow:

1) Establish good bijections to obtain specifications for the bivariate OGFs

OGFs are purely formal, which makes them difficult to analyse!

2) Develop new tools to analyse purely formal generating functions:

- Schema based on ODEs, yielding Poisson limit law:
$\partial_{\mathfrak{u}}^{k} F(z, u) \quad$ Only certain terms contribute

Our workflow:

1) Establish good bijections to obtain specifications for the bivariate OGFs

OGFs are purely formal, which makes them difficult to analyse!

2) Develop new tools to analyse purely formal generating functions:

- Schema based on ODEs, yielding Poisson limit law:
$\partial_{u}^{k} F(z, u) \quad$ Only certain terms contribute
- Schema based on compositions (see also [B75,FS93,B18,P19,BKW21]):

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, \mathfrak{u})=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, u)^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, u)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, \mathfrak{u})=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, \mathfrak{u})^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, \mathfrak{u})
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, u)=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, u)^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, u)
$$

Pumping $T^{i d}(z, u)$
$\left.\left[z^{n}\right] \quad \partial_{u} T_{0}^{i d}\right|_{v=1}=T_{0}^{i d}-(u-1) z^{2}-z\left(T_{0}^{i d}\right)^{2} \quad \sim\left[z^{n}\right] T_{0}^{i d}(z, 1)$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, u)=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, u)^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, u)
$$

Pumping $\mathrm{T}^{\mathrm{id}}(z, u)$
$\left.\left[z^{\mathfrak{n}}\right] \quad \partial_{u} T_{0}^{i d}\right|_{v=1}=T_{0}^{i d}-(u-1) z^{2}-z\left(T_{0}^{i d}\right)^{2} \quad \sim\left[z^{\mathfrak{n}}\right] T_{0}^{i d}(z, 1)$
$\left.\left[z^{\mathfrak{n}}\right] \quad \partial_{\mathfrak{u}}^{2} \mathrm{~T}_{0}^{\mathrm{id}}\right|_{v=1}=\partial_{\mathfrak{u}} \mathrm{T}_{0}^{\mathrm{id}}-z^{2}+2 z \mathrm{~T}_{0}^{\mathrm{id}}-2 z \mathrm{~T}_{0}^{\mathrm{id}} \partial_{\mathfrak{u}} \mathrm{T}_{0}^{\mathrm{id}}$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, u)=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, u)^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, u)
$$

Pumping $\mathrm{T}^{\mathrm{id}}(z, u)$
$\left.\left[z^{\mathfrak{n}}\right] \quad \partial_{u} T_{0}^{i d}\right|_{v=1}=T_{0}^{i d}-(u-1) z^{2}-z\left(T_{0}^{i d}\right)^{2} \quad \sim\left[z^{\mathfrak{n}}\right] T_{0}^{i d}(z, 1)$
$\left.\left[z^{n}\right] \quad \partial_{\mathfrak{u}}^{2} T_{0}^{i d}\right|_{v=1}=\partial_{u} T_{0}^{i d}-z^{2}+2 z T_{0}^{i d}-2 z T_{0}^{i d} \partial_{u} T_{0}^{i d}$

$$
=\mathrm{T}_{0}^{\mathrm{id}}-2 u^{2} z^{5}-8 u z^{4}\left(\mathrm{~T}_{0}^{\mathrm{id}}\right)^{2}-\ldots \sim\left[z^{\mathrm{n}}\right] \mathrm{T}_{0}^{\mathrm{id}}(z, 1)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, u)=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, u)^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, u)
$$

Pumping $\mathrm{T}^{\mathrm{id}}(z, u)$
$\left.\left[z^{n}\right] \quad \partial_{u} T_{0}^{i d}\right|_{v=1}=T_{0}^{i d}-(u-1) z^{2}-z\left(T_{0}^{i d}\right)^{2} \quad \sim\left[z^{n}\right] T_{0}^{i d}(z, 1)$
$\left.\left[z^{n}\right] \quad \partial_{u}^{2} T_{0}^{i d}\right|_{v=1}=\partial_{u} T_{0}^{i d}-z^{2}+2 z T_{0}^{i d}-2 z T_{0}^{i d} \partial_{u} T_{0}^{i d}$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for loops/id-subterms:

$$
\mathrm{T}_{0}^{\mathrm{id}}(z, u)=(u-1) z^{2}+z \mathrm{~T}_{0}^{\mathrm{id}}(z, u)^{2}+\partial_{u} \mathrm{~T}_{0}^{\mathrm{id}}(z, u)
$$

Pumping $\mathrm{T}^{\mathrm{id}}(z, u)$
$\left.\left[z^{n}\right] \quad \partial_{u} T_{0}^{i d}\right|_{v=1}=T_{0}^{i d}-(u-1) z^{2}-z\left(T_{0}^{i d}\right)^{2} \quad \sim\left[z^{n}\right] T_{0}^{i d}(z, 1)$
$\left.\left[z^{n}\right] \quad \partial_{u}^{2} T_{0}^{i d}\right|_{v=1}=\partial_{u} T_{0}^{i d}-z^{2}+2 z T_{0}^{i d}-2 z T_{0}^{i d} \partial_{u} T_{0}^{i d}$
$\begin{array}{lll}\dot{\bullet} & & =T_{0}^{i d}-2 u^{2} z^{5}-8 u z^{4}\left(T_{0}^{i d}\right)^{2}-\ldots \sim\left[z^{n}\right] T_{0}^{i d}(z, 1) \\ {\left[z^{n}\right]} & \left.\partial_{\mathfrak{u}}^{k+1} T_{0}^{i d}\right|_{\nu=1} & =\partial_{u}^{k} T_{0}^{i d}-S-2 z T_{0}^{i d} \partial_{\mathfrak{u}}^{k} T_{0}^{i d} \quad \sim\left[z^{n}\right] T_{0}^{i d}(z, 1)\end{array}$
Schema then yields Poisson(1) limit law

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Proof sketch for bridges/closed subterms:

spanning tree def'd by term

Proof sketch for bridges/closed subterms:

spanning tree def'd by term

No bridges along the path

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Proof sketch for bridges/closed subterms:

spanning tree def'd by term

No bridges along the path

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Proof sketch for bridges/closed subterms:

spanning tree def'd by term

No bridges along the path

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Proof sketch for bridges/closed subterms:

spanning tree def'd by term

No bridges along the path

Proof sketch for bridges/closed subterms:

spanning tree def'd by term

No bridges along the path

$$
\frac{\partial}{\partial v} T_{0}^{s u b}(z, v)=-\frac{v^{2} z T_{0}^{s u b}(z, v)^{3}+z^{2} T_{0}^{s u b}(z, v)-T_{0}^{s u b}(z, v)^{2}}{\left(v^{3}-v^{2}\right) z T_{0}^{s u b}(z, v)^{2}+v z^{2}-(v-1) \mathrm{T}_{0}^{s u b}(z, v)}
$$

$\chi_{\text {May be pumped using our schema }}$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for vertices of given degree:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for vertices of given degree:
Specifications based on exponential Hadamard products

$$
\mathrm{OT}(z, \mathfrak{u})=\mathfrak{u} z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for vertices of given degree:
Specifications based on exponential Hadamard products

$$
\mathrm{OT}(z, u)=\mathfrak{u} z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for vertices of given degree:
Specifications based on exponential Hadamard products

$$
\mathrm{OT}(z, u)=\mathfrak{u} z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for vertices of given degree:
Specifications based on exponential Hadamard products

$$
\mathrm{OT}(z, u)=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)
$$

$\int(2,3)$-valent maps
$\operatorname{TT}(z, u)=z \frac{\partial}{\partial z}\left(\ln \left(\exp \left(\frac{z^{2}}{2}\right) \odot \exp \left(\frac{z^{3}}{3}+\frac{u z^{2}}{2}\right)\right)\right)$
$\mathrm{A}(z, \mathfrak{u})=\frac{z^{2}+z^{2} \mathrm{TT}\left(z^{\frac{1}{2}}, \mathfrak{u}\right)}{1-z}$ closed affine terms

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Compositions for fast-growing series:

$$
\mathrm{F}(z, u, \mathrm{G}(z, u))
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Compositions for fast-growing series:

$$
\sqrt{\left[z^{n-1}\right] \mathrm{G}(z, 1)=o\left(\left[z^{n}\right] \mathrm{G}(z, 1)\right)}
$$

$F(z, u, G(z, u))$
for $u=1$, analytic at 0

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Compositions for fast-growing series:

$$
\sqrt{\left[z^{n-1}\right] \mathrm{G}(z, 1)=o\left(\left[z^{n}\right] \mathrm{G}(z, 1)\right)}
$$

$\mathrm{F}(z, u, \mathrm{G}(z, u))$
for $u=1$, analytic at 0
If F is the $g . f$ of \mathcal{F}, G the one of \mathcal{G} :

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Compositions for fast-growing series:

If F is the $\mathrm{g} . \mathrm{f}$ of \mathcal{F}, G the one of \mathcal{G} :
"To build a big $\mathcal{F}(\mathcal{G})$ structure, pick a small \mathcal{F} one and replace one of its atoms with a big \mathcal{G}-structure"

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Compositions for fast-growing series:

If F is the $\mathrm{g} . \mathrm{f}$ of \mathcal{F}, G the one of \mathcal{G} :
"To build a big $\mathcal{F}(\mathcal{G})$ structure, pick a small \mathcal{F} one and replace one of its atoms with a big \mathcal{G}-structure"

If F is the logarithm:

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Compositions for fast-growing series:

If F is the $g . f$ of \mathcal{F}, G the one of \mathcal{G} :
"To build a big $\mathcal{F}(\mathcal{G})$ structure, pick a small \mathcal{F} one and replace one of its atoms with a big \mathcal{G}-structure"

If F is the logarithm:
Asymptotically, almost all not-necessarily-connected \mathcal{G}-structures are connected, so the distribution of params. is the same for connected and not-necessarily-so structures!

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for bridges/closed subterms (contd.) :

$$
\begin{aligned}
& \mathrm{OT}(z, \mathfrak{u})=\mathfrak{u} z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right) \\
& \operatorname{TT}(z, \mathfrak{u})=z \frac{\partial}{\partial z}\left(\ln \left(\exp \left(\frac{z^{2}}{2}\right) \odot \exp \left(\frac{z^{3}}{3}+\frac{\mathfrak{u z}}{2}\right)\right)\right) \\
& \mathrm{A}(z, \mathfrak{u})=\frac{z^{2}+z^{2} \operatorname{TT}\left(z^{\frac{1}{2}}, \mathfrak{u}\right)}{1-\mathfrak{u} z}
\end{aligned}
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for bridges/closed subterms (contd.) :

$$
\begin{aligned}
& \mathrm{OT}(z, u)=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\operatorname { l n } \left(\frac{\left.\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} 3+u z\right)^{\prime}\right)}{} \mathrm{TT}(z, u)=z \frac{\partial}{\partial z}\left(\ln \left(\frac{\exp \left(\frac{z^{2}}{2}\right) \odot \exp \left(\frac{z^{3}}{3}+\frac{u z^{2}}{2}\right)}{i}\right)\right)\right.\right. \\
& \mathrm{A}(z, u)=\frac{z^{2}+z^{2} \mathrm{TT}\left(z^{\frac{1}{2}}, \mathfrak{u}\right)}{1-\mathrm{uz}} \\
& \text { Ammenable to saddle-point analysis! }
\end{aligned}
$$

Both yield Gaussian limit laws

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Proof sketch for bridges/closed subterms (contd.) :

$$
\begin{aligned}
& \operatorname{OT}(z, u)=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\underline{n}\left(, e^{(e x p}\left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)^{\prime}\right)\right) \\
& \mathrm{TT}(z, u)=z \frac{\partial}{\partial z}\left(\frac{1}{\ln }\left(\frac{\left(\exp \left(\frac{z^{2}}{2}\right) \odot \exp \left(\frac{z^{3}}{3}+\frac{u z^{2}}{2}\right) i\right.}{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ammenable to saddle-point analysis! }
\end{aligned}
$$

Both yield Gaussian limit laws
Use schema for compositions to show that the results carry over!

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- A standard decomposition for closed terms

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- A standard decomposition for closed terms
identity
θ

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- A standard decomposition for closed terms
identity
applications
b

Mean number of β-redices in closed terms (WIP)

- A standard decomposition for closed terms identity

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- Tracking redices during the decomposition

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)
-Tracking redices during the decomposition
no redex
θ

Mean number of β-redices in closed terms (WIP)

- Tracking redices during the decomposition

Mean number of β-redices in closed terms (WIP)

- Tracking redices during the decomposition

Abstractions, subcase 1.1

\#ways to do this
$|t|_{\beta}$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- Tracking redices during the decomposition

Abstractions, subcase 1.2

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- Tracking redices during the decomposition Abstractions, subcase 1.3

\#ways to do this

$$
|t|-|t|_{\lambda}
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)
-Tracking redices during the decomposition

- Using the following facts:
- $|t|_{\lambda}=\frac{|t|+1}{3},|t|-|t|_{\lambda}=\frac{2|t|-1}{3}$
- $r \partial_{r} T_{0}=\sum_{t \in T_{0}}|t|_{\beta} z^{|t|} r^{|t|_{\beta}}$
$\bullet \frac{z \partial_{z} T_{0}+T_{0}}{3}=\sum_{t \in T_{0}} \frac{|t|+1}{3} z^{|t|} \nu^{|t|_{\beta}}$
- $\frac{2 z \partial_{z} T_{0}-T_{0}}{3}=\sum_{t \in T_{0}} \frac{2|t|-1}{3} z^{|t|} \mathcal{V}^{|t|_{\beta}}$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)

- Translating to a diff-eq and pumping

$$
\begin{aligned}
\mathrm{T}_{0} & =-z\left(z^{2}(r+1)(1+(r-1) z T)(r-1) \partial_{\mathrm{r}} \mathrm{~T}_{0}\right. \\
& \left.-\frac{(1+z(r-1) \mathrm{T}) z^{3}(r+5) \partial_{z} \mathrm{~T}_{0}}{3}-\frac{z^{3}(r-1)^{2} \mathrm{~T}_{0}^{2}}{3}-\frac{4 z^{2}(r-1) \mathrm{T}_{0}}{3}-z-\mathrm{T}_{0}^{2}\right)
\end{aligned}
$$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger
Mean number of β-redices in closed terms (WIP)
-Translating to a diff-eq and pumping

$$
\begin{aligned}
\mathrm{T}_{0} & =-z\left(z^{2}(r+1)(1+(r-1) z T)(r-1) \partial_{r} \mathrm{~T}_{0}\right. \\
& \left.-\frac{(1+z(r-1) \mathrm{T}) z^{3}(r+5) \partial_{z} \mathrm{~T}_{0}}{3}-\frac{z^{3}(r-1)^{2} \mathrm{~T}_{0}^{2}}{3}-\frac{4 z^{2}(r-1) \mathrm{T}_{0}}{3}-z-\mathrm{T}_{0}^{2}\right)
\end{aligned}
$$

A plot of the dist. of redices for $n=119$

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Whats next?

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Whats next?

- More parameters:

Whats next?

- More parameters:

- More map/term families: planar, bridgeless...

Whats next?

- More parameters:

- More map/term families: planar, bridgeless...

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[AB00] Arques, D., \& Béraud, J. F. (2000).
Rooted maps on orientable surfaces, Riccati's equation and continued fraction Discrete mathematics, 215(1-3), 1-12.
[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., \& Soria, M. (2001).
Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures \& Algorithms, 19(3-4), 194-246.

Bibliography

[BR86] Bender, E. A., \& Richmond, L. B. (1986).
A survey of the asymptotic behaviour of maps.
Journal of Combinatorial Theory, Series B, 40(3), 297-329.
[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., \& Zaionc, M. (2016).
A natural counting of lambda terms.
In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
[BBD19] Bendkowski, M., Bodini, O., \& Dovgal, S. (2019).
Statistical Properties of Lambda Terms.
The Electronic Journal of Combinatorics, P4-1.
[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., \& Hwang, H. K. (2018, June).
Asymptotic distribution of parameters in random maps.
In 29th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[FS93] Flajolet, P., \& Soria, M. (1993).
General combinatorial schemas: Gaussian limit distributions and exponential tails. Discrete Mathematics, 114(1-3), 159-180.
[B18] Borinsky, M. (2018).
Generating Asymptotics for Factorially Divergent Sequences.
The Electronic Journal of Combinatorics, P4-1.
[BKW21] Banderier, C., Kuba, M., \& Wallner, M. (2021).
Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.
arXiv preprint arXiv:2103.03751.

Bibliography

[P19] Panafieu, É. (2019).
Analytic combinatorics of connected graphs.
Random Structures \& Algorithms, 55(2), 427-495.
[BGJ13] Bodini, O., Gardy, D., \& Jacquot, A. (2013).
Asymptotics and random sampling for BCI and BCK lambda terms Theoretical Computer Science, 502, 227-238.

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Our results: limit distributions Trivalent maps \leftrightarrow closed linear terms
(2,3)-maps \leftrightarrow closed affine terms

\# unary vertices $=\#$ free vars $\mathcal{N}\left(\mathfrak{m u}, \sigma^{2}\right)$ with $\mu=\sigma^{2}=(2 \mathfrak{n})^{2 / 3}$

(1,3)-maps \leftrightarrow open linear terms

