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There exists a dictionary relating structural properties of objects
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A universal system of computation

Its terms are formed using the following grammar

x | λx.t |(s t)

variable

abstraction
represents an anonymous function

application
feeding an argument t to a function s

We’re interested in terms up to α-equivalence:

(λx.xx)(λx.xx)
α
= (λy.yy)(λx.xx)

α

6= (λy.ya)(λx.xx)
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(λx.xx)(λy.yy)
λx.λy.x

λx.λy.x (y a)

General terms: no restrictions on variable use

free variable
unused abstraction

var. used twice

λx.λy.yλx.λy.λz.(x a) y
(λx.λy.a)(λx.x)

Affine Terms: bound variables occur at most once

λx.λy.(y x)a λx.λy.(y a)(b x)

Linear Terms: bound variables occur exactly once

λx.a(λz.(λy.y (x z)))
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order matters!

Closed linear terms ↔ trivalent maps

Established in [BGJ13, BGGJ13]
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Why should you, a combinatorialist, be interested in λ-terms?

Decomposing open rooted trivalent maps

T(z,u) = z zT(z)2+ + z∂uT(z)

à la Tutte

edges
unary vertices

x (s t) λx.t
subterms

free vars

and open linear terms!

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

[AB00]

[Z16]

lin.term =
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Syntactic diagrams of families of λ-terms yield maps

λ-terms as invariants of maps encoding decomposition data

Dictionary: properties of terms ↔ properties of maps
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We focus on the following families:

Rooted closed trivalent maps ↔ closed linear terms
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Previous works focused on:
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Other size notions for λ-terms

Parameters in general maps

[BFSS01, BR86]

[BGLZ16, BBD18]

[BCDH18]



9 A

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

λx.λy.(y λw.w)x



9 B

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

# loops = # id-subterms

λx.λy.(y λw.w)x



9 C

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

Xidn
D→ Poisson(1)

# loops = # id-subterms

λx.λy.(y λw.w)x



10 A

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

λx.λy.(y λz.λw.zw)x



10 B

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

# bridges = # closed subterms

λx.λy.(y λz.λw.zw)x



10 C

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

Xsubn
D→ Poisson(1)

# bridges = # closed subterms

λx.λy.(y λz.λw.zw)x



10 D

Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Closed trivalent maps ↔ closed linear terms

Xsubn
D→ Poisson(1)

# bridges = # closed subterms

λx.λy.(y λz.λw.zw)x

one bridge ↔ no bridge
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Our results: limit distributions
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Open trivalent maps ↔ open linear terms

# unary vertices = # free vars

(a (λx.λy.(y b)(c x)))

Xfreen −µn√
σ2
n

D→ N(0, 1)

for µ = σ2 = (2n)1/3
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Our results: limit distributions

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

(2,3)-valent maps ↔ closed affine terms

# binary vertices = # unused λ

(λx.λy.(λz.x)y)(λw.λv.λu.u)

Xλn−µn√
σ2
n

D→ N(0, 1)

for µ = σ2 = 2n
2

2/3
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Our workflow:

1) Establish good bijections to obtain specifications for the bivariate OGFs

2) Develop new tools to analyse purely formal generating functions:

OGFs are purely formal, which makes them difficult to analyse!

Schema based on ODEs, yielding Poisson limit law:

Schema based on compositions (see also [B75,FS93,B18,P19,BKW21]):

F(z,u,G(z,u)) G(z,u)

inherits the limit law of

∂kuF(z,u)
Only certain terms contribute

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

we have a lot of ’em, but only some are tractable!
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↔

T id0 (z,u) = (u− 1)z2 + zT id0 (z,u)2 + ∂uT
id
0 (z,u)

Pumping T id(z,u)

∂uT
id
0

∣∣
v=1

= T id0 − (u− 1)z2 − z(T id0 )2

∂2
uT
id
0

∣∣
v=1

= ∂uT
id
0 − z2 + 2zT id0 − 2zT id0 ∂uT

id
0

∼ [zn]T id0 (z, 1)[zn]
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14 F

Proof sketch for loops/id-subterms:

↔

T id0 (z,u) = (u− 1)z2 + zT id0 (z,u)2 + ∂uT
id
0 (z,u)

Pumping T id(z,u)

∂uT
id
0

∣∣
v=1

= T id0 − (u− 1)z2 − z(T id0 )2

∂2
uT
id
0

∣∣
v=1

= ∂uT
id
0 − z2 + 2zT id0 − 2zT id0 ∂uT

id
0

∼ [zn]T id0 (z, 1)[zn]

[zn]
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= T id0 − 2u2z5 − 8uz4(T id0 )2 − . . . ∼ [zn]T id0 (z, 1)



14 G

Proof sketch for loops/id-subterms:

↔

T id0 (z,u) = (u− 1)z2 + zT id0 (z,u)2 + ∂uT
id
0 (z,u)

Pumping T id(z,u)

∂uT
id
0

∣∣
v=1

= T id0 − (u− 1)z2 − z(T id0 )2

∂2
uT
id
0

∣∣
v=1

= ∂uT
id
0 − z2 + 2zT id0 − 2zT id0 ∂uT

id
0

∂k+1
u T id0

∣∣
v=1

= ∂kuT
id
0 − S− 2z T id0 ∂kuT

id
0

∼ [zn]T id0 (z, 1)[zn]

[zn]

[zn] ∼ [zn]T id0 (z, 1)
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= T id0 − 2u2z5 − 8uz4(T id0 )2 − . . . ∼ [zn]T id0 (z, 1)
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Proof sketch for loops/id-subterms:

↔

T id0 (z,u) = (u− 1)z2 + zT id0 (z,u)2 + ∂uT
id
0 (z,u)

Pumping T id(z,u)

∂uT
id
0

∣∣
v=1

= T id0 − (u− 1)z2 − z(T id0 )2

∂2
uT
id
0

∣∣
v=1

= ∂uT
id
0 − z2 + 2zT id0 − 2zT id0 ∂uT

id
0

∂k+1
u T id0

∣∣
v=1

= ∂kuT
id
0 − S− 2z T id0 ∂kuT

id
0

∼ [zn]T id0 (z, 1)[zn]

[zn]

[zn] ∼ [zn]T id0 (z, 1)

Schema then yields Poisson(1) limit law
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= T id0 − 2u2z5 − 8uz4(T id0 )2 − . . . ∼ [zn]T id0 (z, 1)
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Proof sketch for bridges/closed subterms:
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spanning tree def’d by term
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Proof sketch for bridges/closed subterms:

Q
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No bridges along the path

spanning tree def’d by term
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Proof sketch for bridges/closed subterms:

Q
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No bridges along the path

spanning tree def’d by term
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Proof sketch for bridges/closed subterms:

Q
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No bridges along the path

spanning tree def’d by term
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Proof sketch for bridges/closed subterms:

Q
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No bridges along the path

spanning tree def’d by term
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Proof sketch for bridges/closed subterms:

Q

∂
∂v
Tsub0 (z, v) = −

v2zTsub0 (z,v)3+z2Tsub0 (z,v)−Tsub0 (z,v)2

(v3−v2)zTsub0 (z,v)2+vz2−(v−1)Tsub0 (z,v)

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

No bridges along the path

spanning tree def’d by term

May be pumped using our schema
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Proof sketch for vertices of given degree:
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Proof sketch for vertices of given degree:

Specifications based on exponential Hadamard products

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
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Proof sketch for vertices of given degree:

Specifications based on exponential Hadamard products

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
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Proof sketch for vertices of given degree:

Specifications based on exponential Hadamard products

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
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Proof sketch for vertices of given degree:

Specifications based on exponential Hadamard products

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))

TT(z,u) = z ∂
∂z

(
ln
(

exp
(
z2

2

)
� exp

(
z3

3 + uz2

2

)))
A(z,u) = z2+z2TT(z

1
2 ,u)

1−z

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

(2,3)-valent maps

closed affine terms
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Compositions for fast-growing series:

F(z,u,G(z,u))
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Compositions for fast-growing series:

F(z,u,G(z,u))

for u = 1, analytic at 0

[zn−1]G(z, 1) = o([zn]G(z, 1))
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Compositions for fast-growing series:

F(z,u,G(z,u))

for u = 1, analytic at 0

[zn−1]G(z, 1) = o([zn]G(z, 1))

If F is the g.f of F, G the one of G:
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Compositions for fast-growing series:

F(z,u,G(z,u))

for u = 1, analytic at 0

[zn−1]G(z, 1) = o([zn]G(z, 1))

If F is the g.f of F, G the one of G:
“To build a big F(G) structure, pick a small F one and replace one of its atoms with a big G-structure”

G
F

dictates behavior of parameter
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Compositions for fast-growing series:

F(z,u,G(z,u))

for u = 1, analytic at 0

[zn−1]G(z, 1) = o([zn]G(z, 1))

If F is the g.f of F, G the one of G:
“To build a big F(G) structure, pick a small F one and replace one of its atoms with a big G-structure”

G
F

If F is the logarithm:

dictates behavior of parameter
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17 F

Compositions for fast-growing series:

F(z,u,G(z,u))

for u = 1, analytic at 0

[zn−1]G(z, 1) = o([zn]G(z, 1))

If F is the g.f of F, G the one of G:
“To build a big F(G) structure, pick a small F one and replace one of its atoms with a big G-structure”

G
F

If F is the logarithm:

Asymptotically, almost all not-necessarily-connected G-structures

are connected, so the distribution of params. is the same

dictates behavior of parameter

for connected and not-necessarily-so structures!
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Proof sketch for bridges/closed subterms (contd.) :

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
TT(z,u) = z ∂

∂z

(
ln
(

exp
(
z2

2

)
� exp

(
z3

3 + uz2

2

)))
A(z,u) = z2+z2TT(z

1
2 ,u)

1−uz
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Proof sketch for bridges/closed subterms (contd.) :

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
TT(z,u) = z ∂

∂z

(
ln
(

exp
(
z2

2

)
� exp

(
z3

3 + uz2

2

)))
A(z,u) = z2+z2TT(z

1
2 ,u)

1−uz

Ammenable to saddle-point analysis!

Both yield Gaussian limit laws

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger



18 C

Proof sketch for bridges/closed subterms (contd.) :

OT(z,u) = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)� exp(z3/3 + uz)

))
TT(z,u) = z ∂

∂z

(
ln
(

exp
(
z2

2

)
� exp

(
z3

3 + uz2

2

)))
A(z,u) = z2+z2TT(z

1
2 ,u)

1−uz

Ammenable to saddle-point analysis!

Use schema for compositions to show that the results carry over!

Both yield Gaussian limit laws
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connectedrooted
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Mean number of β-redices in closed terms (WIP)
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Mean number of β-redices in closed terms (WIP)
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A standard decomposition for closed terms
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Mean number of β-redices in closed terms (WIP)

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

A standard decomposition for closed terms

identity
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Mean number of β-redices in closed terms (WIP)
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A standard decomposition for closed terms

identity applications
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Mean number of β-redices in closed terms (WIP)
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A standard decomposition for closed terms

identity applications abstractions
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Mean number of β-redices in closed terms (WIP)
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Mean number of β-redices in closed terms (WIP)
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Tracking redices during the decomposition
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Mean number of β-redices in closed terms (WIP)
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Tracking redices during the decomposition

no redex
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Mean number of β-redices in closed terms (WIP)
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Tracking redices during the decomposition

no redex applications

λ

λ

+1

+0
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Mean number of β-redices in closed terms (WIP)

Dist. of param. in restricted classes of maps and λ-terms - Bodini, Singh, Zeilberger

Tracking redices during the decomposition

Abstractions, subcase 1.1

-1

+0

#ways to do this

|t|β



20 F

Mean number of β-redices in closed terms (WIP)
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Tracking redices during the decomposition

Abstractions, subcase 1.2

+0

+1

#ways to do this

|t|λ − |t|β
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Mean number of β-redices in closed terms (WIP)
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Tracking redices during the decomposition

Abstractions, subcase 1.3

+0

+0

#ways to do this

|t|− |t|λ



20 H

Mean number of β-redices in closed terms (WIP)
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Tracking redices during the decomposition

Using the following facts:

r∂rT0 =
∑
t∈T0

|t|βz
|t|r|t|β

z∂zT0+T0

3 =
∑
t∈T0

|t|+1
3 z|t|v|t|β

2z∂zT0−T0

3 =
∑
t∈T0

2|t|−1
3 z|t|v|t|β

|t|λ = |t|+1
3 , |t|− |t|λ = 2|t|−1

3
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Mean number of β-redices in closed terms (WIP)
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Translating to a diff-eq and pumping

T0 = −z
(
z2(r+ 1)(1 + (r− 1)zT)(r− 1)∂rT0

− (1+z(r−1)T)z3(r+5)∂zT0

3 −
z3(r−1)2T 2

0

3 − 4z2(r−1)T0

3 − z− T2
0

)
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Mean number of β-redices in closed terms (WIP)
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Translating to a diff-eq and pumping

T0 = −z
(
z2(r+ 1)(1 + (r− 1)zT)(r− 1)∂rT0

− (1+z(r−1)T)z3(r+5)∂zT0

3 −
z3(r−1)2T 2

0

3 − 4z2(r−1)T0

3 − z− T2
0

)

Mean ∼ k
8

Variance ∼ 29k
320

Writing the size as n = 3k+ 2, we have:

A plot of the dist. of redices for n = 119
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Whats next?
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Whats next?

More parameters:

Mean path length Profile
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Whats next?

More parameters:

Mean path length Profile

More map/term families: planar, bridgeless...
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Whats next?

More parameters:

Mean path length Profile

More map/term families: planar, bridgeless...

Thank you!
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Our results: limit distributions
Trivalent maps ↔ closed linear terms

# loops = #id-subterms

# bridges = # closed subt.} Poisson(1)

(1,3)-maps ↔ open linear terms

# unary vertices = # free vars

(2,3)-maps ↔ closed affine terms

# unary vertices = # free vars

N(mu,σ2) with µ = σ2 = (2n)2/3

N(µ,σ2) with
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µ = σ2 = (2n)1/3


