Normalisation of closed linear λ -terms and patterns in trivalent maps

Alexandros Singh

Based on joint work with Olivier Bodini, Bernhard Gittenberger Michael Wallner, and Noam Zeilberger.

16th workshop on Computational Logic and Applications Friday, January 13th 2023 The plan

- \bullet A brief overview of maps and the $\lambda\text{-calculus}$
- Context and results
- A strategy for deriving such results
- Normalisation of closed linear terms
- Other patterns in terms and maps

asymptotically —

Of the following types of redices, which one has the highest mean number of occurences in random closed linear terms?

- a) Abstraction applied to variable: $(\lambda x.t) y$
- b) Abstraction applied to abstraction: $(\lambda x.t) (\lambda y.t')$
- c) Abstraction applied to application: $(\lambda x.t) (a b)$

What are maps?

What are maps?

• A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

What are maps?

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Tutte in the 60s, as part of his approach to the four colour theorem.

The untyped linear λ -calculus

• Its terms are formed inductively

The untyped linear λ -calculus

• Its terms are formed inductively

The untyped linear λ -calculus

The untyped linear λ -calculus

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms
 In the same year, together with Gittenberger, they study: BCI(p) terms (each bound variable appears p times) general closed λ-terms

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms
 In the same year, together with Gittenberger, they study: BCI(p) terms (each bound variable appears p times) general closed λ-terms

In 2014, Zeilberger and Giorgetti describe a bijection:
 rooted planar maps ↔ normal planar lambda terms

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ -terms

• In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps \leftrightarrow normal planar lambda terms

Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ -terms

• In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps \leftrightarrow normal planar lambda terms

Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

• In 2015, Zeilberger advocates for

"linear lambda terms as invariants of rooted trivalent maps"

Related work has been carried out on:

• Parameter studies on general λ -terms (ex., [BBD19]). different size notions!

Related work has been carried out on:

- Parameter studies on general λ -terms (ex., [BBD19]). different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Related work has been carried out on:

- Parameter studies on general λ -terms (ex., [BBD19]). different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Our focus is on:

• Trivalent maps, linear terms, and related families.

Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]).
 different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Our focus is on:

- Trivalent maps, linear terms, and related families.
- Exploring the combinatorial interplay of maps and terms.

Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]).
 different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Our focus is on:

- Trivalent maps, linear terms, and related families.
- Exploring the combinatorial interplay of maps and terms.
- Study of pairs of parameters on maps and terms.

Our results •=w. Bodini, Zeilberger

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Our results •=w. Bodini, Zeilberger

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Bridges in trivalent maps and closed subterms in closed linear terms
 Limit law: Poisson(1)

Our results $\bullet = w$. Bodini, Zeilberger $\bullet = \bullet +$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

- Bridges in trivalent maps and closed subterms in closed linear terms
 Limit law: Poisson(1)
- Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: $\frac{n}{24}$

Our results $\bullet = w$. Bodini, Zeilberger $\bullet = \bullet +$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

- Bridges in trivalent maps and closed subterms in closed linear terms
 Limit law: Poisson(1)
- Patterns in trivalent maps and redices in closed linear terms Asymptotic mean and variance: $\frac{n}{24}$
- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11n}{240}$

Our results $\bullet = w$. Bodini, Zeilberger $\bullet = \bullet +$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

- Bridges in trivalent maps and closed subterms in closed linear terms
 Limit law: Poisson(1)
- Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: $\frac{\pi}{24}$

Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11n}{240}$

→ this talk!

Our strategy:

1) Track evolution of parameters in decompositions of maps/ λ -terms

Our strategy:

1) Track evolution of parameters in decompositions of maps/ λ -terms

Our strategy:

1) Track evolution of parameters in decompositions of maps/ λ -terms

different decompositions ~> differential equations, Hadamard products, ...

generating functions divergent away from 0

2) Develop tools for rapidly growing coefficients, based on:

- Moment pumping
- Bender's theorem for compositions F(z, G(z))
- Coefficient asymptotics of Cauchy products

 $[z^n](\mathsf{A}(z) \cdot \mathsf{B}(z)) \sim \mathfrak{a}_n \mathfrak{b}_0 + \mathfrak{a}_0 \mathfrak{b}_n + \mathcal{O}(\mathfrak{a}_{n-1} + \mathfrak{b}_{n-1})$

for $A\,,\,B\,,\,G\,$ divergent and F analytic

 $\bullet \# \text{ subterms} \leftrightarrow \# \text{ edges}$

Dictionary

- $\bullet \# \text{ subterms} \leftrightarrow \# \text{ edges}$
- $\bullet \ closed \ subterms \leftrightarrow \ bridges$

Dictionary

- $\bullet \# \text{ subterms} \leftrightarrow \# \text{ edges}$
- $\bullet \ closed \ subterms \leftrightarrow \ bridges$
- \bullet using variables in order \leftrightarrow planarity of maps

Dictionary

- # subterms $\leftrightarrow \#$ edges
- closed subterms \leftrightarrow bridges
- using variables in order \leftrightarrow planarity of maps
- Q: What if we erase the labels? Can we recover them?
- A: Yes, via an exploration process! [BGJ13, BGGJ13,Z16]

Decomposing rooted trivalent maps

11 A

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps and closed linear terms!

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

represents: $f = x \mapsto t_1$ $f(t_2) : \text{replace } x \text{ with } t_2 \text{ inside } t_1$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

represents: $f = x \mapsto t_1$

 $f(t_2)$: replace \boldsymbol{x} with t_2 inside t_1

Examples of reductions

 $((\lambda x.x) y) \xrightarrow{\beta} x[x := y] = y$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

represents: $f = x \mapsto t_1$

 $f(t_2)$: replace \boldsymbol{x} with t_2 inside t_1

Examples of reductions

$$((\lambda x.x) y) \xrightarrow{\beta} x[x := y] = y$$
$$((\lambda x.([(\lambda y.(y x)) z)]) (a b)) \xrightarrow{\beta} (\lambda x.(z x))(a b) \xrightarrow{\beta} (z(a b))$$

A term with no redices is called a normal form

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

represents: $f - \chi \rightarrow t_{\perp}$

$$f = x \mapsto t_1$$

 $f(t_2)$: replace \boldsymbol{x} with t_2 inside t_1

For linear terms: β -reduction is strongly normalising, has strong diamond property.

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

represents:

$$f = x \mapsto t_1$$

 $f(t_2)$: replace x with t_2 inside t_1

For linear terms: β -reduction is strongly normalising, has strong diamond property.

 β -normalisation terminates in deterministic number of steps

β -reduction in maps

β -reduction in maps

β -reduction in maps

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form?

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form?

A *lower bound* is given by the number of β -redices!

What is the number of β -redices in a random linear λ -term?

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form?

A *lower bound* is given by the number of β -redices!

What is the number of β -redices in a random linear λ -term?

Q: Why is this just a lower bound?

A: Because reducing a redex can create a new one!

Mean number of β -redices in closed terms Tracking redices: starts off easy... Mean number of β -redices in closed terms Tracking redices: starts off easy...

loops

Å

Mean number of β -redices in closed terms Tracking redices: starts off easy...

Mean number of β-redices in closed terms Tracking redices: then gets harder! Abstractions, subcase 1.1

Mean number of β -redices in closed terms

Translating to a differential equation and pumping

$$\begin{split} \mathsf{T} &= z^2 + z\mathsf{T}^2 + z^3(1 + (\mathsf{r} - 1)z\mathsf{T}) \left(\frac{z(\mathsf{r} + 5)\partial_z \mathsf{T}}{3} - (\mathsf{r}^2 - 1)\partial_{\mathsf{r}} \mathsf{T})\right) \\ &+ \frac{z^4(\mathsf{r} - 1)^2 \mathsf{T}^2}{3} + \frac{4z^3(\mathsf{r} - 1)\mathsf{T}}{3} \end{split}$$

Mean number of β -redices in closed terms

Translating to a differential equation and pumping

$$\begin{split} \mathsf{T} &= z^2 + z \mathsf{T}^2 + z^3 (1 + (r-1)z\mathsf{T}) \left(\frac{z(r+5)\partial_z \mathsf{T}}{3} - (r^2 - 1)\partial_r \mathsf{T}) \right) \\ &+ \frac{z^4 (r-1)^2 \mathsf{T}^2}{3} + \frac{4z^3 (r-1)\mathsf{T}}{3} \end{split}$$

Let X_n be the random variable given by number of redices in a closed linear term of size $n\in 3\mathbb{N}+2.$ Then

$$\mathbb{E}(X_n) \sim \frac{n}{24}$$
$$\mathbb{V}(X_n) \sim \frac{n}{24}$$

A lower bound for normalisation

Refining our counting to track reproducing redices:

A lower bound for normalisation

(see JJ Lévy's thesis)

Refining our counting to track reproducing redices:

$$p_{1} = (\lambda x.C[(x u)])(\lambda y.t) \xrightarrow{\beta} C[((\lambda y.t) u)]$$
$$p_{2} = (\lambda x.x)(\lambda y.t_{1})t_{2} \xrightarrow{\beta} (\lambda y.t_{1})t_{2}$$
$$p_{3} = ((\lambda x.\lambda y.t_{1}) t_{2}) t_{3} \xrightarrow{\beta} (\lambda y.t_{1}[x := t_{2}]) t_{3}$$

Enumerating p_1 -patterns

Enumerating p_1 -patterns

Cuts destroying a p_1 -pattern:

Enumerating p_1 -patterns

Cuts creating a p_1 -pattern:

Thus we also need to keep track of:

 $C_1[\lambda x.C_2[(t_1 \ x)])(\lambda y.t_2)] \qquad C_1[(\lambda x.x)(\lambda y.t_2)]$

Enumerating p_1 -patterns

Applications creating p_1 and auxilliary patterns:

Thus, for an app. of the form $(l_1 \lambda y.t_1)$ we need to consider how l_1 was formed.

• Thus we have the following equations:

$$\begin{split} & S = \Lambda + A \\ & \Lambda = z^2 + 2z^4 S_z + (\nu - u + 4(1 - u))z^3 S_u + (u - \nu + 4(1 - \nu))z^3 S_\nu \\ & A = zS^2 + (u - 1)z(z^4 S_z + (\nu - u + 2(1 - u))z^3 S_u + 2(1 - \nu)z^3 S_\nu) \cdot \Lambda \\ & + (\nu - 1)z(z^2 + z^4 S_z + (u - \nu + 2(1 - \nu))z^3 S_u + 2(1 - u)z^3 S_u) \cdot \Lambda \end{split}$$

• Extracting the mean:

$$\begin{aligned} \partial_{\mathbf{u}} S|_{\mathbf{u}=1,\mathbf{v}=1} \\ &= \left(2zS\partial_{\mathbf{u}}S + 2z^{4}\partial_{z,\mathbf{u}}S + z^{7}\partial_{z}S + 2z^{9}(\partial_{z}S)^{2} - 5z^{3}\partial_{\mathbf{u}}S + z^{3}\partial_{\mathbf{v}}S\right)|_{\mathbf{u}=1,\mathbf{v}=1} \end{aligned}$$

• Thus we have the following equations:

$$\begin{split} & S = \Lambda + A \\ & \Lambda = z^2 + 2z^4 S_z + (\nu - u + 4(1 - u))z^3 S_u + (u - \nu + 4(1 - \nu))z^3 S_\nu \\ & A = zS^2 + (u - 1)z(z^4 S_z + (\nu - u + 2(1 - u))z^3 S_u + 2(1 - \nu)z^3 S_\nu) \cdot \Lambda \\ & + (\nu - 1)z(z^2 + z^4 S_z + (u - \nu + 2(1 - \nu))z^3 S_u + 2(1 - u)z^3 S_u) \cdot \Lambda \end{split}$$

• Extracting the mean:

$$\begin{aligned} \partial_{\mathbf{u}} S|_{\mathbf{u}=1,\mathbf{v}=1} \\ &= \left(2zS\partial_{\mathbf{u}}S + 2z^{4}\partial_{z,\mathbf{u}}S + z^{7}\partial_{z}S + 2z^{9}(\partial_{z}S)^{2} - 5z^{3}\partial_{\mathbf{u}}S + z^{3}\partial_{\mathbf{v}}S\right)|_{\mathbf{u}=1,\mathbf{v}=1} \end{aligned}$$

• Thus we have the following equations:

$$\begin{split} &S = \Lambda + A \\ &\Lambda = z^2 + 2z^4 S_z + (\nu - u + 4(1 - u))z^3 S_u + (u - \nu + 4(1 - \nu))z^3 S_\nu \\ &A = zS^2 + (u - 1)z(z^4 S_z + (\nu - u + 2(1 - u))z^3 S_u + 2(1 - \nu)z^3 S_\nu) \cdot \Lambda \\ &+ (\nu - 1)z(z^2 + z^4 S_z + (u - \nu + 2(1 - \nu))z^3 S_u + 2(1 - u)z^3 S_u) \cdot \Lambda \end{split}$$

• Extracting the mean:

• Finally we obtain a mean number of occurences:

 $\mathbb{E}[\# p_1 \text{ patterns}] \sim \frac{1}{6}$

Enumerating p_1 -patterns and p_2 -patterns

• Finally we obtain a mean number of occurences:

 $\mathbb{E}[\# p_1 \text{ patterns}] \sim \frac{1}{6}$

• Analogously, we have a mean number of occurences for p_2 :

$$\mathbb{E}[\# p_2 \text{ patterns}] \sim \frac{1}{48}$$

Both are asymptotically constant in expectation!

• As before, we'll also need to enumerate auxilliary patterns:

 $(\lambda x.\lambda y.t_1)$ $(\lambda x.\lambda y.t_1) t_2 t_3 (p_3)$ $(\lambda x.\lambda y.t_1) t_2$

• However we run into a problem:

Enumerating p_3 -patterns

• Generatingfunctionology fails, we revert to more elementary methods:

$$\mathbb{E}(V_n) = \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|} + \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|}$$

Enumerating p_3 -patterns

• Generating functionology fails, we revert to more elementary methods: $\underset{asymptotic \text{ contribution}}{\overset{\mathbb{E}(V_{n-3})}{n}}$

$$\mathbb{E}(V_n) = \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|} + \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|}$$

Enumerating p_3 -patterns

• Generating function logy fails, we revert to more elementary methods: $\frac{\mathbb{E}(V_{n-3})}{\mathbb{E}(V_{n-3})}$

$$\mathbb{E}(V_n) = \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|} + \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|}$$

Magic: linear over *families* of all possible abstractions created via cuts from a fixed term!

$$\begin{split} \overline{X}_n &= (2n-12)\overline{X}_{n-3}2\overline{Y}_{n-3} \\ \overline{Y}_n &= (2n-6)Y_{n-3} - 6Y_{n-3} \\ \overline{Z}_n &= 2(n-4)(Z+\mathbf{1}_{\Lambda_n}) \end{split}$$

where: X_n counts # of p_1 patt. over terms of size n Y_n is the same for the pattern $(\lambda x.\lambda y.t_1)$ t_2 , and Z is the same for the pattern $(\lambda x.\lambda y.t_1)$

The \overline{V} for $V \in \{X_n, Y_n, Z_n\}$ are cummulatives over families of abstractions

The lower bound

Theorem Let W_n be the random variable given by number of steps required to normalise a linear term of size $n \in 3\mathbb{N} + 2$. Then

 $\mathbb{E}(W_n) \ge \frac{11n}{240}$, for n large enough

During an open problem session of CLA 2020, Noam Zeilberger conjectured:

$$\mathbb{E}(W_n) \sim \frac{n}{21}$$

We got pretty close:

$$\frac{11}{240} - \frac{1}{21} = 0.001...$$

Counting redices by type of argument

Counting redices by type of argument

Theorem $\mathbb{E}(\#(\lambda x.t) \ y) \sim \frac{n}{30}$ $\mathbb{E}(\#(\lambda x.t) \ (\lambda y.t')) \sim \frac{1}{20}$

 $\mathbb{E}(\#(a \ b) \ (\lambda y.t')) \sim \frac{n}{120}$

• Classify patterns according to their expected number of occurences: constant or linear in n.

- Classify patterns according to their expected number of occurences: constant or linear in n.
- Automatise the process of obtaining specifications tracking occurences of our desired patterns.

- Classify patterns according to their expected number of occurences: constant or linear in n.
- Automatise the process of obtaining specifications tracking occurences of our desired patterns.
- Explore the meaning of β -reduction om maps. Connections to knot theory?

- Classify patterns according to their expected number of occurences: constant or linear in n.
- Automatise the process of obtaining specifications tracking occurences of our desired patterns.
- Explore the meaning of β -reduction om maps. Connections to knot theory?

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., & Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms. The Electronic Journal of Combinatorics, P30-P30.

[Z16] Zeilberger, N. (2016).

Linear lambda terms as invariants of rooted trivalent maps. Journal of functional programming, 26.

[AB00] Arques, D., & Béraud, J. F. (2000). Rooted maps on orientable surfaces, Riccati's equation and continued fractions Discrete mathematics, 215(1-3), 1-12.

[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., & Soria, M. (2001). Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures & Algorithms, 19(3-4), 194-246.

Bibliography

- [BR86] Bender, E. A., & Richmond, L. B. (1986). A survey of the asymptotic behaviour of maps. Journal of Combinatorial Theory, Series B, 40(3), 297-329.
- [BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., & Zaionc, M. (2016). A natural counting of lambda terms.
- In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
- [BBD19] Bendkowski, M., Bodini, O., & Dovgal, S. (2019). Statistical Properties of Lambda Terms.
- The Electronic Journal of Combinatorics, P4-1.
- [BCDH18] Bodini, O., Courtiel, J., Dovgal, S., & Hwang, H. K. (2018, June).
 Asymptotic distribution of parameters in random maps.
 In 29th International Conference on Probabilistic, Combinatorial and
 Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).

An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.

[FS93] Flajolet, P., & Soria, M. (1993).

General combinatorial schemas: Gaussian limit distributions and exponential tails. Discrete Mathematics, 114(1-3), 159-180.

[B18] Borinsky, M. (2018).

Generating Asymptotics for Factorially Divergent Sequences. The Electronic Journal of Combinatorics, P4-1.

[BKW21] Banderier, C., Kuba, M., & Wallner, M. (2021).

Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.

arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., & Jacquot, A. (2013). Asymptotics and random sampling for BCI and BCK lambda terms Theoretical Computer Science, 502, 227-238.

[M04] Mairson, H. G. (2004).

Linear lambda calculus and PTIME-completeness Journal of Functional Programming, 14(6), 623-633.

[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., & David, R. (2013) Asymptotically almost all λ-terms are strongly normalizing Logical Methods in Computer Science, 9

[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., & Tsukada, T. (2017) Almost Every Simply Typed λ -Term Has a Long β -Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg. Bibliography

[B19] Baptiste L. (2019).

A new family of bijections for planar maps

Journal of Combinatorial Theory, Series A.