Normalisation of closed linear λ-terms and patterns in trivalent maps

Alexandros Singh
Based on joint work with Olivier Bodini, Bernhard Gittenberger Michael Wallner, and Noam Zeilberger.

16th workshop on Computational Logic and Applications
Friday, January 13th 2023

The plan

- A brief overview of maps and the λ-calculus
- Context and results
- A strategy for deriving such results
- Normalisation of closed linear terms
- Other patterns in terms and maps

Quiz
asymptotically
Of the following types of redices, which one has the highest mean number of occurences in random closed linear terms?
a) Abstraction applied to variable: ($\lambda x . t) y$
b) Abstraction applied to abstraction: ($\lambda x . t$) ($\lambda y . t^{\prime}$)
c) Abstraction applied to application: ($\lambda x . t$) (a b)

What are maps?

What are maps?

$$
4 С Т \ldots
$$

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

What are maps?

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Cute in the 60 s , as part of his approach to the four colour theorem.

The untyped linear λ-calculus

- Its terms are formed inductively

The untyped linear λ-calculus

- Its terms are formed inductively

The untyped linear λ-calculus

- Its terms are formed inductively

The untyped linear λ-calculus

- Its terms are formed inductively

$$
\frac{\Gamma, x, y, \Delta \vdash \mathrm{t}}{\Gamma, y, x, \Delta \vdash \mathrm{t}} \text { exc } \quad \frac{\Gamma, x, y \vdash \mathrm{t}}{\Gamma, x \vdash \mathrm{t}[\mathrm{y}:=\mathrm{x}]} \text { con }
$$

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms
rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$\operatorname{BCI}(p)$ terms (each bound variable appears p times)
general closed λ-terms

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$\operatorname{BCI}(p)$ terms (each bound variable appears p times) general closed λ-terms
- In 2014, Zeilberger and Giorgetti describe a bijection: rooted planar maps \leftrightarrow normal planar lambda terms

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$B C I(p)$ terms (each bound variable appears p times)
general closed λ-terms
- In 2014, Zeilberger and Giorgetti describe a bijection:
rooted planar maps \leftrightarrow normal planar lambda terms
Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:

$$
\text { BCI }(p) \text { terms (each bound variable appears } p \text { times) }
$$

general closed λ-terms

- In 2014, Zeilberger and Giorgetti describe a bijection:
rooted planar maps \leftrightarrow normal planar lambda terms
Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)
- In 2015, Zeilberger advocates for
"linear lambda terms as invariants of rooted trivalent maps"

The thesis in context

Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]). different size notions!

The thesis in context
Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]). different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

The thesis in context
Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]). different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Our focus is on:

- Trivalent maps, linear terms, and related families.

The thesis in context

Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]). different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Our focus is on:

- Trivalent maps, linear terms, and related families.
- Exploring the combinatorial interplay of maps and terms.

The thesis in context

Related work has been carried out on:

- Parameter studies on general λ-terms (ex., [BBD19]). different size notions!
- Parameter studies on general maps (ex., [BCDH18]).

Our focus is on:

- Trivalent maps, linear terms, and related families.
- Exploring the combinatorial interplay of maps and terms.
- Study of pairs of parameters on maps and terms.

Our results

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms

Limit law: Poisson(1)

Our results

 $\bullet=\mathrm{w}$. Bodini, ZeilbergerParameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms

Limit law: Poisson(1)

Our results

$\bullet=\mathrm{w}$. Bodini, Zeilberger $\bullet=\bullet+$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms

Limit law: Poisson(1)

- Patterns in trivalent maps and redices in closed linear terms

Asymptotic mean and variance: $\frac{n}{24}$

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms
Limit law: Poisson(1)
- Patterns in trivalent maps and redices in closed linear terms

$$
\text { Asymptotic mean and variance: } \frac{n}{24}
$$

- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11 n}{240}$

Our results

$\bullet=\mathrm{w}$. Bodini, Zeilberger $\bullet=\bullet+$ Gittenberger, Wallner

Parameters on maps and terms of arbitrary genus (number of):

- Loops in trivalent maps and identity-subterms in closed linear terms Limit law: Poisson(1)
- Bridges in trivalent maps and closed subterms in closed linear terms

Limit law: Poisson(1)

- Patterns in trivalent maps and redices in closed linear terms Asymptotic mean and variance: $\frac{n}{24}$
- Steps to reach normal form for closed linear terms

Asymptotic mean bound below by: $\frac{11 n}{240}$

Our strategy:

1) Track evolution of parameters in decompositions of maps $/ \lambda$-terms

Our strategy:

1) Track evolution of parameters in decompositions of maps $/ \lambda$-terms

- $T=u z+z L^{2}+z \partial_{\mathfrak{u}} L$

- $\mathrm{T}=u z+z^{2}+z \mathrm{~L}^{2}+2 z^{4} \partial_{z} \mathrm{~L}$
-10

- $\mathrm{T}=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)$

Our strategy:

1) Track evolution of parameters in decompositions of maps $/ \lambda$-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

2) Develop tools for rapidly growing coefficients, based on:

- Moment pumping
- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A(z) \cdot B(z)) \sim a_{n} b_{0}+a_{0} b_{n}+O\left(a_{n-1}+b_{n-1}\right)
$$

for A, B, G divergent and F analytic

From closed terms to maps

From closed terms to maps

$$
(\lambda x . x)(\lambda y \cdot(\lambda z . z y)(\lambda w \cdot \lambda u . w u))
$$

From closed terms to maps

$$
(\lambda x \cdot x)(\lambda y \cdot(\lambda z \cdot z y)(\lambda w \cdot \lambda u \cdot w u))
$$

Dictionary

- \# subterms $\leftrightarrow \#$ edges

From closed terms to maps
$(\lambda x . x)(\lambda y \cdot(\lambda z . z y)(\lambda w . \lambda u . w u))$

From closed terms to maps
$(\lambda x . x)(\lambda y .(\lambda z . z y)(\lambda w . \lambda u . w u))$

Dictionary

- \# subterms \leftrightarrow \# edges
- closed subterms \leftrightarrow bridges
- using variables in order \leftrightarrow planarity of maps

From closed terms to maps

$$
(\lambda x . x)(\lambda y .(\lambda z . z y)(\lambda w . \lambda u . w u))
$$

Dictionary

- \# subterms \leftrightarrow \# edges
- closed subterms \leftrightarrow bridges
- using variables in order \leftrightarrow planarity of maps

Q: What if we erase the labels? Can we recover them?
A: Yes, via an exploration process! [BGJ13, BGGJ13,Z16]

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps and closed linear terms!
$\lambda x . x$

$$
(s t)
$$

$$
\lambda x . t=\lambda x . t \mid u:=(x u)] \text { or }
$$

$$
\rightarrow \lambda x .[[u:=(u x)]
$$

edges

\downarrow
$T(z)=z^{2}+z T(z)^{2}+$

subterms

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x . t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

represents:

$$
\mathrm{f}=\chi \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \stackrel{\beta}{\rightarrow} t_{1}\left[x:=t_{2}\right]
$$

represents:

$$
\mathrm{f}=\chi \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}
Examples of reductions

$$
((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y
$$

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x \cdot \mathrm{t}_{1}\right) \mathrm{t}_{2}\right) \stackrel{\beta}{\rightarrow} \mathrm{t}_{1}\left[x:=\mathrm{t}_{2}\right]
$$

represents:

$$
f=\chi \mapsto t_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}
Examples of reductions

$$
\begin{aligned}
& ((\lambda x . x) y) \xrightarrow{\beta} x[x:=y]=y \\
& ((\lambda x .(\lambda y \cdot(y \quad y)) z))(a b)) \xrightarrow{\beta}(\lambda x .(z x))(a \quad \text { b }) \xrightarrow{\beta}(z(a b))
\end{aligned}
$$

A term with no redices is called a normal form

Computing with the λ-calculus
Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \stackrel{\beta}{\rightarrow} t_{1}\left[x:=t_{2}\right]
$$

represents:

$$
\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}
For linear terms: β-reduction is strongly normalising, has strong diamond property.

Computing with the λ-calculus
Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \stackrel{\beta}{\rightarrow} t_{1}\left[x:=t_{2}\right]
$$

represents:

$$
\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}
$$

$f\left(t_{2}\right)$: replace x with t_{2} inside t_{1}
For linear terms: β-reduction is strongly normalising, has strong diamond property.

β-normalisation terminates in deterministic number of steps
β-reduction in maps

β-reduction in maps

β-reduction in maps

Normalisation of random closed linear terms

[^0]Normalisation of random closed linear terms

$$
\begin{aligned}
& \text { Q: How many steps does it take for a random closed linear term } \\
& \text { to reach normal form? }
\end{aligned}
$$

A lower bound is given by the number of β-redices!
What is the number of β-redices in a random linear λ-term?

uniform distribution

Normalisation of random closed linear terms \rightarrow well defined! (strong normalisation + diamond)
Q: How many steps does it take for a random closed linear term to reach normal form?

A lower bound is given by the number of β-redices!
What is the number of β-redices in a random linear λ-term?

uniform distribution

Q: Why is this just a lower bound?
A: Because reducing a redex can create a new one!

Mean number of β-redices in closed terms

 Tracking redices: starts off easy...Mean number of β-redices in closed terms Tracking redices: starts off easy...
loops
9

Mean number of β-redices in closed terms
Tracking redices: starts off easy...

Mean number of β-redices in closed terms
Tracking redices: then gets harder!
Abstractions, subcase 1.1

Mean number of β-redices in closed terms
Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T}=z^{2} & \left.+z \mathrm{~T}^{2}+z^{3}(1+(\mathrm{r}-1) z \mathrm{~T})\left(\frac{z(\mathrm{r}+5) \partial_{z} \mathrm{~T}}{3}-\left(\mathrm{r}^{2}-1\right) \partial_{\mathrm{r}} \mathrm{~T}\right)\right) \\
& +\frac{z^{4}(\mathrm{r}-1)^{2} \mathrm{~T}^{2}}{3}+\frac{4 z^{3}(\mathrm{r}-1) \mathrm{T}}{3}
\end{aligned}
$$

Mean number of β-redices in closed terms
Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T}=z^{2} & \left.+z \mathrm{~T}^{2}+z^{3}(1+(\mathrm{r}-1) z \mathrm{~T})\left(\frac{z(\mathrm{r}+5) \partial_{z} \mathrm{~T}}{3}-\left(\mathrm{r}^{2}-1\right) \partial_{\mathrm{r}} \mathrm{~T}\right)\right) \\
& +\frac{z^{4}(\mathrm{r}-1)^{2} \mathrm{~T}^{2}}{3}+\frac{4 z^{3}(\mathrm{r}-1) \mathrm{T}}{3}
\end{aligned}
$$

Let X_{n} be the random variable given by number of redices in a closed linear term of size $n \in 3 \mathbb{N}+2$. Then

$$
\begin{aligned}
& \mathbb{E}\left(X_{n}\right) \sim \frac{n}{24} \\
& \mathbb{V}\left(X_{n}\right) \sim \frac{n}{24}
\end{aligned}
$$

A lower bound for normalisation
Refining our counting to track reproducing redices:

A lower bound for normalisation
(see JJ Lévy's thesis)

Refining our counting to track reproducing redices:

$$
\begin{aligned}
& p_{1}=(\lambda x \cdot C[(x u)])(\lambda y \cdot t) \xrightarrow{\beta} C[((\lambda y \cdot t) u)] \\
& p_{2}=(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2} \xrightarrow{\beta}\left(\lambda y \cdot t_{1}\right) t_{2} \\
& p_{3}=\left(\left(\lambda x \cdot \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \xrightarrow{\beta}\left(\lambda y \cdot t_{1}\left[x:=t_{2}\right]\right) t_{3}
\end{aligned}
$$

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Cuts destroying a p_{1}-pattern:

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Cuts creating a p_{1}-pattern:

Thus we also need to keep track of:

$$
\left.C_{1}\left[\lambda x . C_{2}\left[\left(t_{1} x\right)\right]\right)\left(\lambda y . t_{2}\right)\right] \quad C_{1}\left[(\lambda x . x)\left(\lambda y . t_{2}\right)\right]
$$

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Applications creating p_{1} and auxilliary patterns:

Thus, for an app. of the form ($l_{1} \lambda y . t_{1}$) we need to consider how l_{1} was formed.

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

- Extracting the mean:
$\left.\partial_{\mathcal{u}} S\right|_{\mathcal{u}=1, v=1}$
$=\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, u} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathfrak{u}=1, v=1}$

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

- Extracting the mean:
$\left.\partial_{\mathcal{u}} S\right|_{\mathcal{u}=1, v=1}$
$=\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, u} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathfrak{u}=1, v=1}$

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
\begin{aligned}
A= & z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda \\
& +(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathbf{S}_{u}+2(1-u) z^{3} S_{u}\right) \cdot \Lambda
\end{aligned}
$$

- Extracting the mean:

$$
\begin{aligned}
& \left.\partial_{\mathcal{u}} S\right|_{u=1, v=1} \\
& \text { bijection: } \partial_{v} \leftrightarrow \partial_{u} \\
& =\left.\left(2 z S \partial_{u} S+2 z^{4} \partial_{z, u} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{u} S+z^{3} \partial_{v} S\right)\right|_{u=1, v=1}
\end{aligned}
$$

Enumerating p_{1}-patterns

- Finally we obtain a mean number of occurences:

$$
\mathbb{E}\left[\# p_{1} \text { patterns }\right] \sim \frac{1}{6}
$$

Enumerating p_{1}-patterns and p_{2}-patterns

- Finally we obtain a mean number of occurences:

$$
\mathbb{E}\left[\# p_{1} \text { patterns }\right] \sim \frac{1}{6}
$$

- Analogously, we have a mean number of occurences for p_{2} :

$$
\mathbb{E}\left[\# p_{2} \text { patterns }\right] \sim \frac{1}{48}
$$

Both are asymptotically constant in expectation!

Enumerating p_{3}-patterns

- As before, we'll also need to enumerate auxilliary patterns:

$$
\left(\lambda x . \lambda y . t_{1}\right) \quad\left(\lambda x . \lambda y . t_{1}\right) t_{2} \quad\left(\lambda x . \lambda y . t_{1}\right) t_{2} t_{3}
$$

- However we run into a problem:

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Magic: linear over families of all possible abstractions created via cuts from a fixed term!

$$
\begin{aligned}
& \bar{X}_{n}=(2 n-12) \bar{X}_{n-3} 2 \bar{Y}_{n-3} \\
& \bar{Y}_{n}=(2 n-6) Y_{n-3}-6 Y_{n-3} \\
& \bar{Z}_{n}=2(n-4)\left(Z+\mathbf{1}_{\wedge_{n}}\right)
\end{aligned}
$$

where: X_{n} counts $\#$ of p_{1} patt. over terms of size n Y_{n} is the same for the pattern $\left(\lambda x . \lambda y . t_{1}\right) t_{2}$, and Z is the same for the pattern ($\lambda x . \lambda y . t_{1}$)
The \bar{V} for $V \in\left\{X_{n}, Y_{n}, Z_{n}\right\}$ are cummulatives over families of abstractions

The lower bound

Theorem
Let W_{n} be the random variable given by number of steps required to normalise a linear term of size $n \in 3 \mathbb{N}+2$. Then

$$
\mathbb{E}\left(W_{n}\right) \geqslant \frac{11 n}{240}, \text { for } n \text { large enough }
$$

During an open problem session of CLA 2020, Noam Zeilberger conjectured:

$$
\mathbb{E}\left(W_{n}\right) \sim \frac{n}{21}
$$

We got pretty close:

$$
\frac{11}{240}-\frac{1}{21}=0.001 \ldots
$$

Counting redices by type of argument

Counting redices by type of argument

Theorem

$\mathbb{E}(\#(\lambda x . t) y) \sim \frac{n}{30}$
$\mathbb{E}\left(\#(\lambda x . t)\left(\lambda y . t^{\prime}\right)\right) \sim \frac{1}{20}$
$\mathbb{E}\left(\#(\mathrm{ab})\left(\lambda y \cdot \mathrm{t}^{\prime}\right)\right) \sim \frac{n}{120}$

Open problems

- Classify patterns according to their expected number of occurences: constant or linear in n.

Open problems

- Classify patterns according to their expected number of occurences: constant or linear in n.
- Automatise the process of obtaining specifications tracking occurences of our desired patterns.

Open problems

- Classify patterns according to their expected number of occurences: constant or linear in n.
- Automatise the process of obtaining specifications tracking occurences of our desired patterns.
- Explore the meaning of β-reduction om maps. Connections to knot theory?

Open problems

- Classify patterns according to their expected number of occurences: constant or linear in n.
- Automatise the process of obtaining specifications tracking occurences of our desired patterns.
- Explore the meaning of β-reduction om maps. Connections to knot theory?

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[AB00] Arques, D., \& Béraud, J. F. (2000).
Rooted maps on orientable surfaces, Riccati's equation and continued fraction Discrete mathematics, 215(1-3), 1-12.
[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., \& Soria, M. (2001).
Random maps, coalescing saddles, singularity analysis, and Airy phenomena.
Random Structures \& Algorithms, 19(3-4), 194-246.

Bibliography

[BR86] Bender, E. A., \& Richmond, L. B. (1986).
A survey of the asymptotic behaviour of maps.
Journal of Combinatorial Theory, Series B, 40(3), 297-329.
[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., \& Zaionc, M. (2016).
A natural counting of lambda terms.
In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
[BBD19] Bendkowski, M., Bodini, O., \& Dovgal, S. (2019).
Statistical Properties of Lambda Terms.
The Electronic Journal of Combinatorics, P4-1.
[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., \& Hwang, H. K. (2018, June).
Asymptotic distribution of parameters in random maps.
In 29th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[FS93] Flajolet, P., \& Soria, M. (1993).
General combinatorial schemas: Gaussian limit distributions and exponential tails.
Discrete Mathematics, 114(1-3), 159-180.
[B18] Borinsky, M. (2018).
Generating Asymptotics for Factorially Divergent Sequences.
The Electronic Journal of Combinatorics, P4-1.
[BKW21] Banderier, C., Kuba, M., \& Wallner, M. (2021).
Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.
arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., \& Jacquot, A. (2013).
Asymptotics and random sampling for BCl and BCK lambda terms
Theoretical Computer Science, 502, 227-238.
[M04] Mairson, H. G. (2004).
Linear lambda calculus and PTIME-completeness
Journal of Functional Programming, 14(6), 623-633.
[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., \& David, R. (2013)

Asymptotically almost all λ-terms are strongly normalizing
Logical Methods in Computer Science, 9
[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., \& Tsukada, T. (2017)
Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg.

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

Bibliography

[B19] Baptiste L. (2019).
A new family of bijections for planar maps Journal of Combinatorial Theory, Series A.

[^0]: well defined! (strong normalisation + diamond)
 Q: How many steps does it take for a random closed linear term to reach normal form?

